



# COUPLED THERMAL AND STRUCTURAL OPTIMIZATION OF A METAL- OR CFRP-BASED CRYOGENIC PROPULSION STAGE SFB TRR40, 16.-17.11.2020



# Introduction

# Model

- Verification
- Example mission
- Technology assessment
- Conclusion / next steps

# **MT Overview: Portfolio**



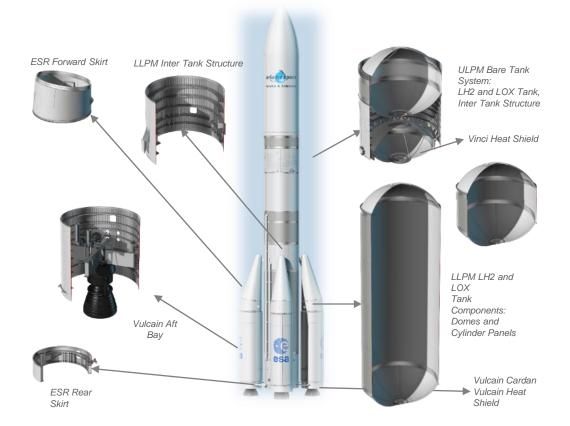
| SPACE | Launcher<br>Spacecrafts<br>Satellites         | <ul> <li>Structures</li> <li>Tanks</li> <li>Booster</li> <li>Satellite Panels</li> </ul>             | <ul> <li>Pressure Vessels</li> <li>Bulkheads</li> <li>Tank Components</li> </ul> |
|-------|-----------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Ŷ     | Commercial & Military<br>Product Applications | <ul> <li>Watertanks</li> <li>Structures</li> <li>Missile Component</li> <li>Tanks Systems</li> </ul> | <ul><li>Shafts</li><li>Struts</li></ul>                                          |

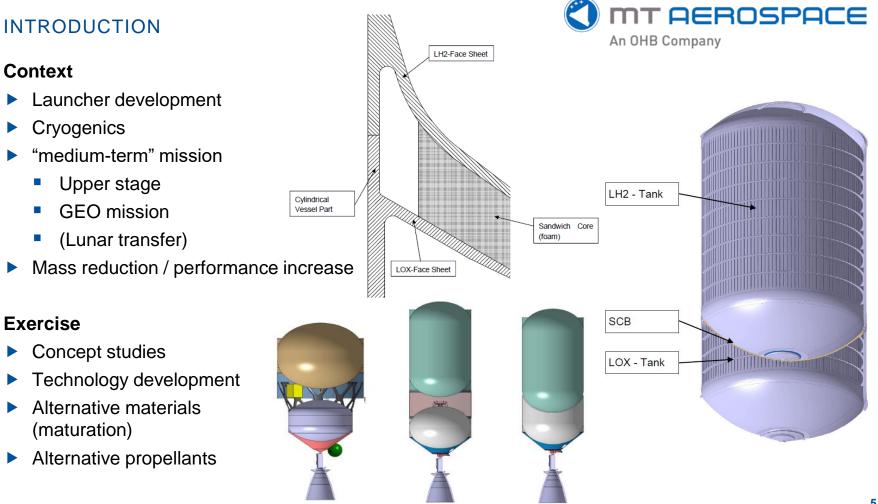
SERVICES



Comprehensive Ground Services – remote, field and stationary – for Integration & Launch Facilities and Astronomical Observatories European Space Center

(Kourou, French Guiana)

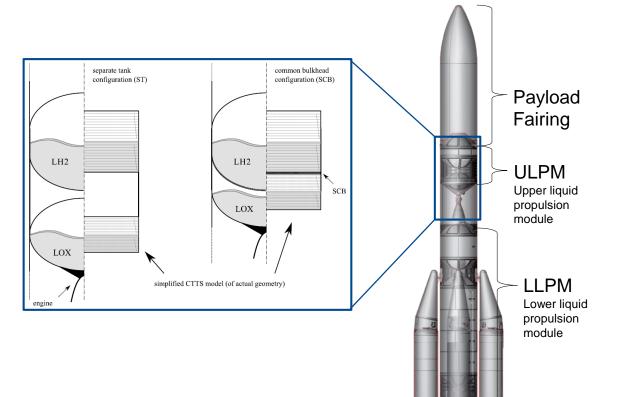

- ARIANE 5 Launch Facilities
- ALMA/ Paranal Observatories


# Ariane 6 – Workshare mt Aerospace



 MT Aerospace with about 11% workshare of Ariane 6

- Design definition authority for metallic aero structures & Tanks
- Risk sharing partner with significant own investment






#### APPLICATION

## <u>Cryogenic upper stage</u> of Ariane 6 (ULPM) to <u>GEO</u>

- Assessment of different technological approaches
  - Separated tanks
  - Common bulkhead
  - In-line vs suspended
- Assessment of different materials
  - Aluminum
  - CFRP
- Assessment of different propellants (e.g. Methalox)







Introduction

# Model

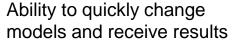
- Verification
- Example mission
- Technology assessment
- Conclusion / next steps

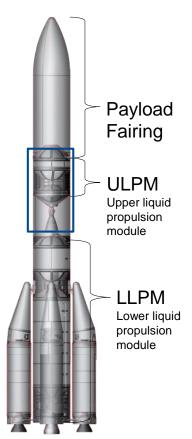
## MODEL GOALS



## <u>Goals</u>

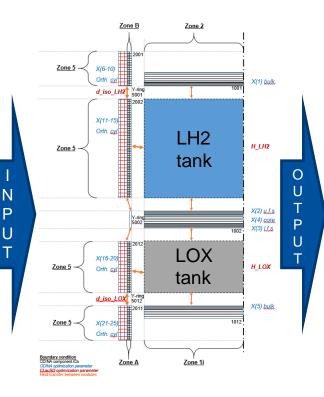
- Assess and compare different technologies
  - Analyze (diss-)advantages
  - Performance
- Optimization
  - Structures / tanks based on mechanical loads
  - Thermal insulation concept
  - Trade evaporation losses for insulation mass
- Appropriate level of detail
  - Geometry
  - Thermodynamics
  - Structural
- Reasonable computation power requirement and programming effort
  - Workstation suitable
  - Simulation times of entire missions in the order of hours





Simplify as much as possible

of key aspects

without compromising accuracy


Coupled approach

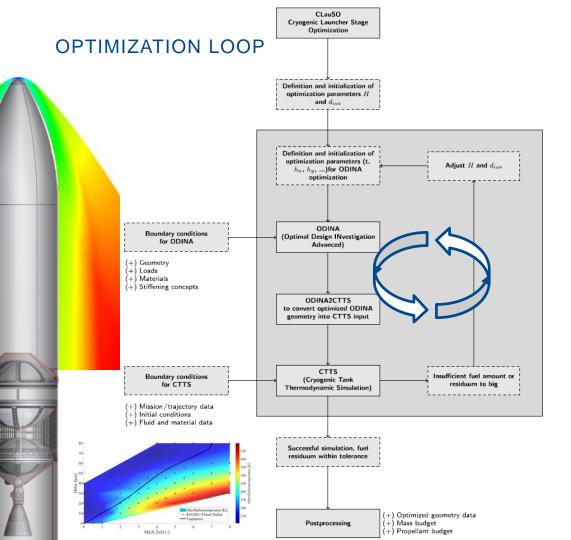




### MODEL OVERVIEW

- Mission
  - Trajectory
  - Phases / durations
- Geometry / Structural components
- Mechanical boundary conditions
  - Pressure differentials
  - Fluxes (axial, bending)
- Thermal boundary conditions
  - Atmospheric flight
  - Space flight
  - Coasting
- Material properties
  - Mechanical
  - Thermal
  - Optical






#### Thermodynamics

- Tank pressure development
- Heat entry / propellant evaporation
- Optimal insulation thickness
- Optimal tank volumes

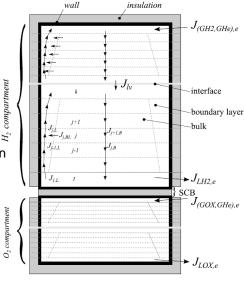
#### Structure

- Preliminary sizing of main components 
   mass estimation
  - Bulkheads
  - Cylinders
  - Y-rings
- Effective thermal masses and distances





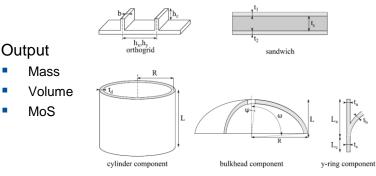
- Launcher functions important for simulation
- Venting: controlled release of excess gas
- Engine feed: draining of liquid tank content towards engine
- Pressurization: active regulation of tank pressure during boost phases


#### Reference mission: GEO

- Chilldown
- Pressurization 200s
- LLPM boost 454s
- 1. ULPM boost 668s
- Coasting 19000s
- Pressurization 50s
- 2. ULPM boost 105s

#### MODEL OVERVIEW

#### Cryogenic Tank Thermodynamic Simulation (CTTS)


- 2D-axisymmetric cylinder approximation of tank
- Division into liquid and gas/vapor phase
- Evaporation or condensation at liquid-vapor interface > energy & mass exchange
- Further division of phases into horizontal layers with boundary and bulk cells
- Natural convection
  - Nusselt correlations
  - Boundary-layer flow
  - Macroscopic circulation flow
- Tank functions
  - Venting
  - Engine feed/depletion
  - Pressurization
- Heat conduction
  - Walls
  - insulation





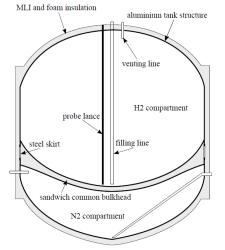
#### **Optimal Design Investigation Advanced (ODINA)**

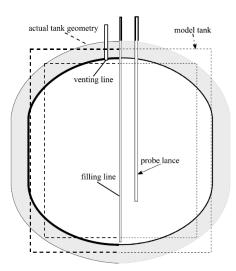
- Analytical formulas for strength and buckling of
  - Cylinders
  - Bulkheads
- Stiffening concepts
  - Isotropic wall
  - Orthogrid stiffening
  - Sandwich (foam or honeycomb)
- Wall thickness and stiffening concepts massoptimized for unlimited number of load scenarios
  - Compression / tension flux
  - Differential pressure





- Introduction
- Model
- Verification
- Example mission
- Technology assessment
- Conclusion / next steps


#### VERIFICATION


#### Verification of CTTS conducted with two different test tanks

SKK

#### CRONUS

- Tank featuring a sandwich common bulkhead
- Cryo-test campaign with LH2 and LN2 in vacuum chamber

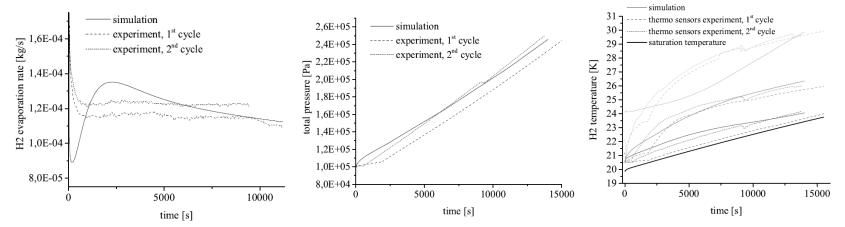




Single compartment tank

Cryo-test campaign with LH2




#### Verification of ODINA

- ODIN -> MT in-house development
- estimation errors range from 3% to 15% depending on
  - structure type
  - general dimensions
  - Ioads applied
- reflection of analytical formulas
- Correlation factors implemented based on FEA calculations

#### VERIFICATION



- CRONUS test tank (FLPP project)
  - Two test cycles (dashed lines) and the simulation results (solid lines)



#### Steady state evaporation rate

... represents the net-heat flow and the correct modelling of evaporation

#### Tank pressure development

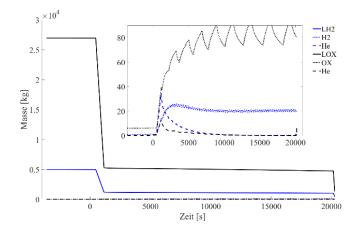
... self-pressurization rate is a result of evaporation and heat entry

#### **Temperature stratification**

... indication of correct simulation of macroscopic flows inside the fluid



Introduction

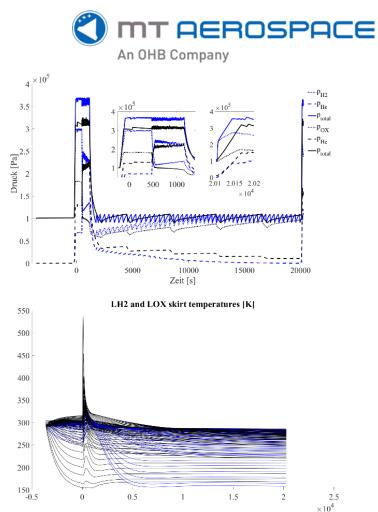

# Model

Verification

# Example mission

- Technology assessment
- Conclusion / next steps

## EXEMPLARY RESULTS MISSION ANALYSIS




# LH2/LOX tank with SCB

### (Sandwich Common Bulkhead)

#### Progression of ...

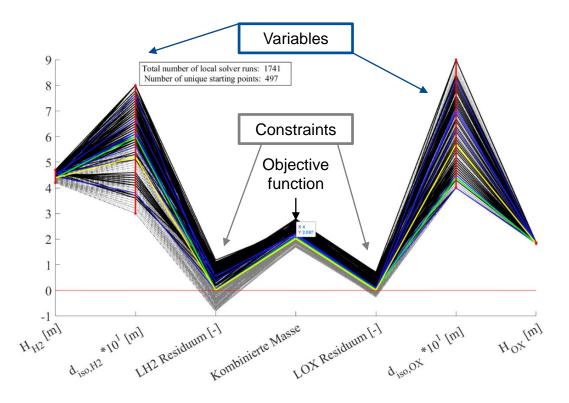
- Propellant masses (liquid & vapor)
- Tank pressure (incl. partial pressure of vapor & gas)
- Wall & insulation temperatures



#### EXEMPLARY RESULTS OPTIMIZATION



#### Variables

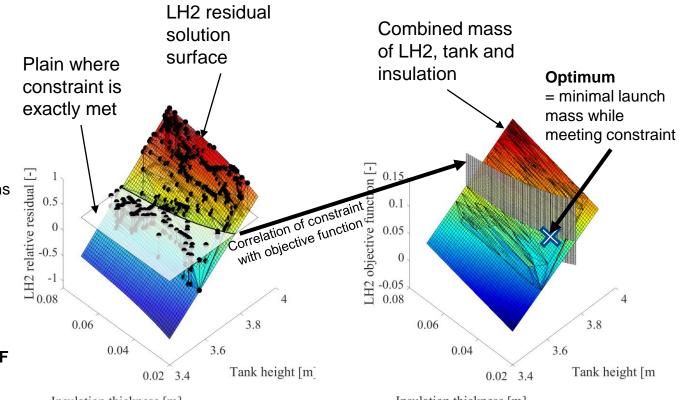

- LH2 tank height
- LOX tank height
- LH2 insulation thickness
- LOX insulation thickness

#### Constraint

- LH2 residual
- LOX residual

#### **Objective function**

- Combines propellant, structure and insulation mass
- Global optimization with local gradient based solver

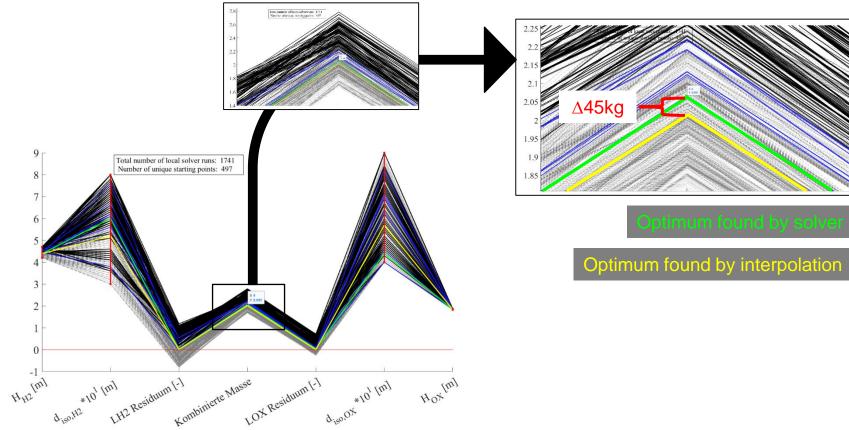



#### EXEMPLARY RESULTS OPTIMIZATION



#### Manual enhancement

- Each dot in the graph represents one simulation
- The LH2 residual is dependent on both associated variables (tank height H\_tank, insulation thickness d\_iso)
- Intersection curve represents all combinations of H\_tank and d\_iso, where the constraint is exactly met
- Optimum will be somewhere along this line
- Transfer of curve onto objective function OF
- Looking for minimum of OF




Insulation thickness [m]

Insulation thickness [m]

#### EXEMPLARY RESULTS OPTIMIZATION







Introduction

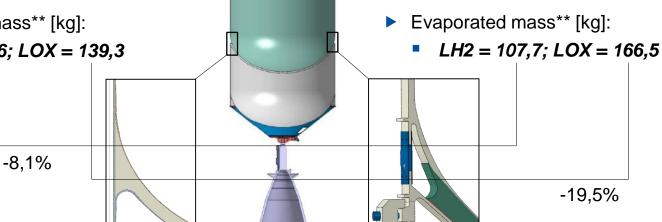
# Model

- Verification
- Example mission
- Technology assessment
- Conclusion / next steps

#### COMPARISON OF AL AND CFRP

### PHOEBUS C3

- SCB core thickness = 12,0 mm
- SCB face sheet thickness = **1**,**0** mm
- Optimal tank height [m]:
  - *LH*2 = 4,392; *LOX* = 1,832
- Optimal insulation thickness [mm]:
  - *LH*2 = 52; *LOX* = 57
- Evaporated mass\*\* [kg]:
  - *LH2* = 99,6; *LOX* = 139,3


Identical ...

- Dimensions
- Mission
- Mechanical loads
- Thermal loads

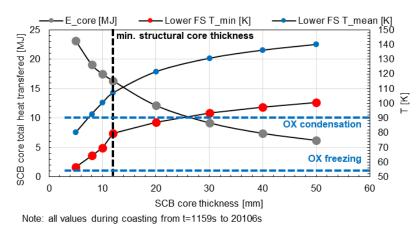


# SCOUT FS2 SCB

- SCB core thickness = **11,3** mm
- SCB face sheet thickness = **1**,**7**\* mm
- Optimal tank height [m]:
  - *LH*2 = 4,392; *LO*X = 1,834
- Optimal insulation thickness [mm]:
  - LH2 = 51; LOX = 65

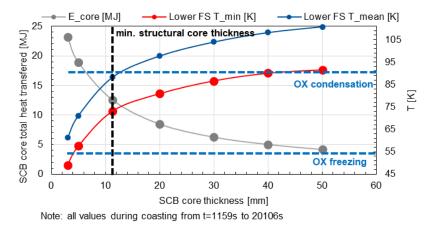


#### CFRP VS ALUMINIUM




A6 ULPM (upper liquid propulsion module) equivalent stage with a SCB (sandwich common bulkhead)

- Sandwich Common Bulkhead core thickness variation
- Investigation of LOX condensation or freezing


#### CFRP

Due to reduced thermal conductivity of CFRP vs. Al, step at *min. struct. core thickn.* noticeable



Aluminum

 Due to large difference in thermal conductivity (Al vs. foam), SCB core is driving for thermal properties



#### GLOBAL OPTIMIZATION SCB VS SEPARATED TANKS & AL VS CFRP



| m <sub>prop</sub> : LH2/LOX<br>d <sub>iso</sub> : LH2/LOX | SCB                                                              | Separated tank                                                   |
|-----------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Aluminum                                                  | m <sub>prop</sub> : 4835/26486 kg<br>d <sub>iso</sub> : 51/65 mm |                                                                  |
| CFRP                                                      | m <sub>prop</sub> : 4812/26196 kg<br>d <sub>iso</sub> : 52/57 mm | m <sub>prop</sub> : 4861/26215 kg<br>d <sub>iso</sub> : 38/74 mm |



Introduction

# Model

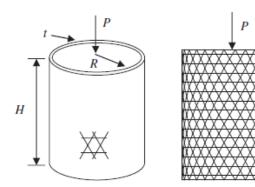
- Verification
- Example mission
- Technology assessment
- Conclusion / next steps

### CONCLUSION / NEXT STEPS



#### Model

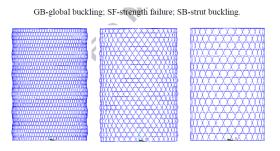
- Coupling of thermal and structural aspects
- Good model for studies
  - Not computation performance hungry
  - Relatively fast simulation of entire mission durations
  - Quick results for parameter studies or investigation of different concepts
- Optimization of various parameters possible
  - Structural
  - Thermal
  - Coupled


#### Benefits of CFRP over AI

- Less dense, less structural weight
- Less heat conductive
  - Reduces parasitic heat fluxes and consequent evaporation losses
  - Requires less insulation effort
- SCB thickness can be easily tailored to optimize LOX cooling by LH2 evaporation
- CFRP is overall beneficial from a thermal-structural systemperspective

## CFRC CYLINDER - ANALYTICAL INVESTIGATION

## Lattice core sandwich

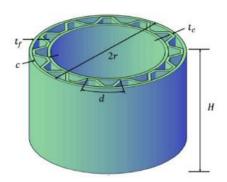

- global buckling
- face sheet mono-cell buckling/dimpling
- face sheet local buckling
- lattice rib crippling



Source: Equivalent analysis and failure prediction of quasi-isotropic composite sandwich cylinder with lattice core under uniaxial compression

# Lattice

- global buckling
- out-of-plane strut buckling
- in-plane strut buckling
- strength failure




Source: Analysis of failure loads and optimal design of composite lattice cylinder under axial compression



# Corrugated core sandwich

- global buckling
- shell buckling
- local buckling
- face crushing



Source: Fabrication and mechanical behavior of carbon fiber composite sandwich cylindrical shells with corrugated cores



#### GERMANY

#### **MT** Aerospace AG

Franz-Josef-Strauß-Straße 5 86153 Augsburg Germany +49 (0)821 505-01

## FRENCH GUIANA

#### MT Aerospace Guyane S.A.S.

Résidence Mme Paille 25-27, rue Branly 97319 Kourou Cedex/France +594 (0)594 3275 90