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Challenges in Predicting Turbulent Combustion

Need Opportunities

= Emission: = Computational resources

= CO, NOx, soot, etc. = Optimization and control
Dynamics: = Complex combustion

= stabilization, thermo- modes, operating
acoustic instabilities conditions, fuels

Challenge
Complex flame topology

Scale separation and efficiency
physical coupling

Chemical complexity application
Stiff chemical reactions
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What is the purpose of a combustion simulations?

| How should a combustion model be selected?

What is the impact of the numerical discretization on the
combustion simulation?

How to assess the simulation accuracy?

How can simulations be augmented with experimental data?
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Combustion Modeling Approaches

RCML1 Injector: Complex Multi-Mode Combustion Modes
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Combustion Modeling Approaches

RCML1 Injector: Complex Multi-Mode Combustion Modes R
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Combustion Modeling Approaches

Topology-based combustion models Topology-free combustion models

e Construct from canonical flame e Detailed/reduced chemical mechanism
configurations - : : : .

How to select the “right” combustion

models?
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Performance of Combustion Models

A
o

@

-

o

| -

O A .

LTJ Model accuracy is affected by
- = Quantities of Interest

2 © = Combustion regime

O = Flow condition

=, v

)

| -

al

>
Computational Cost

Stanford University



Performance of Combustion Models

>

Prediction Error of Qol

Pareto Front

>
Computational Cost
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Performance of Combustion Models

Issues with model-selection

Model error depends on Lifted Partially- (0
remixed '/

> Quantities of interest (T, CO2, CO, NO) lame Base 4%

> Combustion-physical processes
(autoignition, local extinction/re-ignition)

> Combustion regimes: premixed, non-
premixed, multiphase

Obijective Wy

= Develop Pareto-efficient combustion (PEC) Lifted and partially-premixed
framework for optimal submodel assignment, flame base in LOX/GCH4
under consideration of user-specific input supercritical combustion
about

> Quantities of interest
> Set of combustion submodels
> Desired accuracy and cost
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PEC Modeling Framework

User input
= Set of quantities of interest: Q = {Yco2, Ycor Yoo Ynos -}
» Set of candidate combustion models: M
> Reaction-transport manifolds: FPV, FPI, FGM, Inert Mixing, ...
> Chemistry manifold: detailed chemistry, skeletal, reduced, ...
= Penalty term A for cost/accuracy trade-off

PEC algorithmic components

= Model selection

= Error assessment

= Coupling between subzones and different models
= Computational considerations
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PEC Modeling Framework
Model Selection and Error Assessment

= Model assignment M : Q) — M
VI v

Physical Set of candidate models
domain {FPV, FPI, Detailed Chemistry, ...}

= Solve optimization problem

min E(M) + A\C(M),

M:Q—-M
with
= Model error: £(M) :/ e™M(x)] dx,
Q
= Cost: C(M) :/ M(x)] dx .
Q
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PEC Modeling Framework
Error Assessment — Key idea

Drift term: initial growth rate of error

Actual evolution @
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Comb. model ¢
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g Dy Phase speed of manifold describing variable
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é] d¢  Manifold
o Jacobian
>

Manifold describing variable ¥
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Piloted turbulent partially-premixed jet flame

DME Flame-D
= Experimental Configuration
> Piloted partially-premixed jet flame

= Numerical Configuration D,
10 million control volumes
Finite-rate chemistry: 18/44 species
Combustion models

* Flamelet/progress-variable (FPV)

» Finite-rate chemistry (FRC) t T

v

v

v

fuel

» Adaptive model (PEC) . Alr o
Dynamic thickened flame model

v

Fuest, F., Magnotti, G., Barlow, R. S., & Sutton, J. A. (2015).
Scalar structure of turbulent partially-premixed dimethyl ether/air
jet flames. Proceedings of the Combustion Institute, 35(2),
1235-1242.
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Piloted turbulent partially-premixed DME jet flame
Application of drift term to LES of Sydney flame (Lr75)
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Piloted turbulent partially-premixed DME jet flame
Application of drift term to LES of Sydney flame (Lr75)

Drift term for CO
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Piloted turbulent partially-premixed DME jet flame
Application of drift term to LES of Sydney flame (Lr75)

Detail Chem.

FPI-premixed
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Piloted turbulent partially-premixed DME jet flame

Cases

= PEC-64 (A =0.64, FPV)

= PEC-8 (A=0.08, FPV/FRC)
= PEC-0 (A=0.00, FRC)

Pareto-efficient frontier
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Piloted turbulent partially-premixed DME jet flame

Cases

PEC-64 (A = 0.64, FPV)
PEC-8 (A =0.08, FPV/FRC)
PEC-0 (A =0.00, FRC)
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Piloted turbulent partially-premixed DME jet flame

Radial profiles

x/D=5
1
o Exp
0.8 —--PEC-64 (FPV)
——PEC-8
0 0.6 —--PEC-0 (FRC)
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Piloted turbulent partially-premixed DME jet flame
Comparison of PEC-8 and and PEC-32

x/D=10 x/D =20

© Exp
= 0.00 (LES-FRC)
H=ooe
| ~0.32
I“A = 0.64 (LES-FPV)
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Referee gas turbine combustor

Case setup = Mesh: 26 million elements

= NJFCP referee combustor = Chemistry: 26-species reduced

= Pressure: 2.07 bar mechanism**

= Injection system with swirlers = Candidate models:

= Fuel: Cat-C1, POSF11498 (C13H28) > Flamelet/progress-variable (FPV)
= Equivalence ratio: ¢ = 0.096 > Finite-rate chemistry (FRC)

= Qol ={CO, CO2, H2, H20, CH20}

* Esclapez, L. et al.. (2017). Combust Flame, 181. Stanford University
**Gao, Y., & Lu, T. (2017). 10" U.S. National Combust. Meeting.



Referee gas turbine combustor

B

T. 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

POSF11498: 0 02040608 1 OH: 0 0.001 0.002 0.003 0.004 0.005

>

>

30% FRC (A = 2)
40% reduction in cost
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Motivation

= High-fidelity simulations of turbulent reacting flows can incur high
computational costs

» Use Pareto-efficient Combustion (PEC) framework for submodel
assignment
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Fig. 1. Schematic illustration of the Pareto front, representing the computational cost
and model error in predicting a certain quantity of interest.

Figure 3: Combustion-mode analysis in a rocket injector.
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Machine Learning Technigues

» PEC is mathematically rigorous but limited by reliance on local
information regarding the chemical composition

= Data-driven techniques such as ML offer a generalized approach

Il cctiiies lessimiinig

Supervised learning Unsupervised learning Semi-supervised learning
Label Reward «—
Input H.anmput Input —b‘:|—>01.ftpul

; Learn from partially labeled dataor h
Identify pattern and discover siructures inter‘?:tlt'lm Yot erwirornﬂltm

Dimensional reduction

Clustering

Degp QHearning Baoltzrmann machine
Deep delerminidic
pdicy gradiert (DDPG)

Brunton et. al., Ann. Rev. Fluid Mech. (2020)
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Problem with ML-based regression

» Physical models versus data-driven models: conservation laws versus
complex cross-correlations.

= Data-driven models may violate physics, especially when extrapolation
OCcCurs.

= Data driven models are prone to numerical instability.

Solution?

» Use data-driven method to assist the selection of low-fidelity physics-
based model through classification
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Objective

» Flamelet Progress Variable (FPV) model cannot capture thermal
boundary layers

» Use ML (Random Forest) to improve on FPV simulations at a lower cost
than Finite-Rate Chemistry (FRC)

ko YT TG I bl L1

FPV
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Setup

 Based on GOX/GCH4 single element rocket combustor from Silvestri et. al.
« 2 x 10° cells, axisymmetric domain, with minimum cell size of 30 um.
e Turbulent closure with with Thickened Flame and Smagorinsky models.

Fuel CH,4 Oxidizer O Dirichlet BC for Tyan ‘ Symmetry BC| | Pressure Outlet
mass flow inlet mass flow inlet | I

my = 13.39 g/s me, = 34.82 g/s f
Ty = 269 K
/
300
T

270 3700

_ o oy
0 -50 300
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S. Silvestri, M. P. Celano, O. J. Haidn, and O. Knab, EUCASS (2015)




Data-assisted LES

Data preprocessing

: ™ N
. FRC data [ Evaluate submodel error :
H o . V |FRC — o | E
eé = Z’u;,,W where y € {FPV,IM} .

acl} e .

\ s

‘ r :

Construct training features using MIC Construct training labels using Alg. 1 -

A BT G _ :
| ==1[Z,CpT Pral|lVZ|)] Y = {IM, FPV, FRC} :
A i \. -
e

Map feature set and label during training
f:rx—vy where y €Y

E ( Test Features A ( Random Forest A é Predicted labels \ E
| 2= 12.CaT P v 2P Y = {IM, FPV, FRC} |
‘ J \. J :
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Random forests

Input
Tree 1 Tree?2 Tree 20
Prediction 1 Prediction 2 Prediction 20

Average all predictions
Final Prediction
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Constructing training labels/output

Error between different submodels for a = {T, Y.}

Training data for 67 coy = 0.02
‘O[FRC _ ay'
€l =Y Wo—mg— with y € {FPV,IM} 1F ———
acqQ ||Oé ||OO ° FRC
0.8 FPV| |
* IM

User defined threshold

=

if eéM < (%M then
| use inert mixing (IM) 0.4r
else if ¢,"" < 05" then i
| use tabulated chemistry (FPV)

0.2 <
else ‘ .o - Y
| use finite-rate chemistry (FRC) I 0.02 A\
end 0 kL
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Feature/input selection

» Use Maximal Information Coefficient (MIC) to select most relevant input.

= MIC is a correlation measure for nonlinear data, similar to R2 measure

= MIC relating features with e{7 ¢o,

Progress variable C

Mixture fraction Z

IVZ]|2

Density p

Local Prandtl number Pra
Local Reynolds number Rea

IV O

(%]

% Thermal conductivity A

5 Temperature T

L Dynamic viscosity p
Pressure p
IVZ V(|

Turbulent viscosity pi4

Turbulent thermal conductivity A\;
Radial velocity w,

Axial velocity i,

0.05 0.10 0.15 0.20 0.25 0.30
Maximal Information Coefficient

<
o
S

Choose top 5 features from bothx = [Z, 6’,5, f, Pra, ||VZ||2]T

Stanford University




A priori results

Apply trained RF on existing FRC LES data for submodel assignment

| Case | 07r=0.05 0c0=0.05 607=0.02 0c0=0.02 O1,c03=0.05 0O{7,003=0.02 |
Model assignment (IM:FPV:FRC) | 5:67:28  5:33:62  18:48:34  18:35:47 6:63:31 6:42:52
True Classification 0.774 0.725 0.756 0.715 0.753 0.734
| . _ E 1 | ]

I ik M ¥ Yoo =i O L6 Muodel: FRC  FPY 1M

”,l' ) — " lﬁ
By = 0.02

Oa = 0.02

Orcoy = 0.05 10
et T e ca B
2 E.:IJMﬂ.MM 2 W MME _._L..“‘ e
ir.coy = 0.02
i 50 JEL I} 1500 N Jaiy Wy Hj
x| mum)
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A posteriori results

DA, 0;1 coy = 0.02 [ FEr 7 B = &m

T [K]: 270.0 37000 Yeo [ 0.0 0.6 Z 00 1.0 FPV
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A posteriori results

Temperature vs radius (x = 280 mm)
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A posteriori results (modified configuration)

» For a modified configuration with 3x inlet mass flow rate
» Method demonstrates ability to generalize for different configurations

¥ i [l

I | i (e 1]

FRC

DA, By7.00 = 0.02

y [mm]
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Conclusions

» Developed a Pareto-Efficient combustion (PEC) framework for the general
description of complex flame configurations

» PEC-input parameters
> Set of quantities of interest
> Set of candidate combustion models
> Penalty term balancing cost and accuracy

» PEC-model components
> Model selection
> Error assessment - manifold drift
> Coupling between subzones and different models

» Generalization using ML-techniques
> Classification can be used to assign well-tested combustion models.
> Overall desired fidelity can be controlled during labelling.

> Data-assisted simulations outperform monolithic FPV and monolithic FRC.
simulations in accuracy and cost respectively.

> Classification ensures stability and robustness. Conservation of properties o
IS consistent.
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