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Challenges in Predicting Turbulent Combustion

Challenge
Many scalar equations 
Physical and chemical properties
Stiff chemical reactions

Opportunities
 Computational resources
 Optimization and control  
 Complex  combustion 

modes, operating 
conditions, fuels 

Need
 Emission: 
 CO, NOx, soot, etc.
 Dynamics: 
 stabilization, thermo-

acoustic instabilities 

Challenge
 Complex flame topology
 Scale separation and 

physical coupling
 Chemical complexity
 Stiff chemical reactions

Requirements
 Accuracy and error control
 Computational efficiency 

and scalability
 Engineering application
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What is the purpose of a combustion simulations?

How should a combustion model be selected?

What is  the  impact of the numerical discretization on the 
combustion simulation?

How to assess the simulation accuracy?

How can simulations be augmented with experimental  data?
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Model Performance
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Combustion Modeling Approaches
RCM1 Injector: Complex Multi-Mode Combustion Modes 



6

Combustion Modeling Approaches
RCM1 Injector: Complex Multi-Mode Combustion Modes 
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Combustion Modeling Approaches

Topology-based combustion models
• Construct from canonical flame 

configurations
• Low manifold dimensionality (2, 3)

✗ Strong dependency on combustion 
regime and flame structure

✓ Lower computational cost
✗ Require pre-computation and tabulation

• Examples: flamelet-type models (FPV, 
FPI, FGM, etc.)

Topology-free combustion models
• Detailed/reduced chemical mechanism
• High manifold dimensionality (20-40)
• Simple algebraic expression for

✓ Weak dependency on combustion 
regime and flame structure

✗ Higher computational cost
✓ On-the-fly evaluation of modeled 

species

• Examples: DRG, PFA, QSS, PE, 
RCCE

How to select the “right” combustion 
models?
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Performance of Combustion Models

Model accuracy is affected by 
 Quantities of Interest
 Combustion regime
 Flow condition

Computational Cost

Pr
ed

ic
tio

n 
Er

ro
r o

f Q
oI



9

Performance of Combustion Models

Computational Cost

Pareto Front
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Performance of Combustion Models
Issues with model-selection
 Model error depends on 

› Quantities of interest (T, CO2, CO, NO)
› Combustion-physical processes 

(autoignition, local extinction/re-ignition)
› Combustion regimes: premixed, non-

premixed, multiphase

Objective
 Develop Pareto-efficient combustion (PEC) 

framework for optimal submodel assignment, 
under consideration of user-specific input 
about
› Quantities of interest
› Set of combustion submodels
› Desired accuracy and cost

Lifted and partially-premixed 
flame base in LOX/GCH4 
supercritical combustion
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PEC Modeling Framework
User input
 Set of quantities of interest: Q = {YCO2, YCO, YH2O, YNO, …}
 Set of candidate combustion models: M

› Reaction-transport manifolds: FPV, FPI, FGM, Inert Mixing, …
› Chemistry manifold: detailed chemistry, skeletal, reduced, …

 Penalty term λ for cost/accuracy trade-off

PEC algorithmic components
 Model selection
 Error assessment 
 Coupling between subzones and different models
 Computational considerations
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PEC Modeling Framework
Model Selection and Error Assessment 

 Model assignment

 Solve optimization problem

with 
 Model error: 

 Cost:

Physical
domain

Set of candidate models
{FPV, FPI, Detailed Chemistry, …}
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Drift term: initial growth rate of error 

PEC Modeling Framework
Error Assessment – Key idea
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Piloted turbulent partially-premixed jet flame
DME Flame-D
 Experimental Configuration 

› Piloted partially-premixed jet flame
 Numerical Configuration

› 10 million control volumes
› Finite-rate chemistry: 18/44 species
› Combustion models

• Flamelet/progress-variable (FPV)
• Finite-rate chemistry (FRC)
• Adaptive model (PEC)

› Dynamic thickened flame model

Fuest, F., Magnotti, G., Barlow, R. S., & Sutton, J. A. (2015). 
Scalar structure of turbulent partially-premixed dimethyl ether/air 
jet flames. Proceedings of the Combustion Institute, 35(2), 
1235-1242.

Pilot

fuel
Air

DJ

Coflow Air
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Piloted turbulent partially-premixed DME jet flame
Application of drift term to LES of Sydney flame (Lr75)
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Piloted turbulent partially-premixed DME jet flame
Application of drift term to LES of Sydney flame (Lr75)

Drift term for CO
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Piloted turbulent partially-premixed DME jet flame
Application of drift term to LES of Sydney flame (Lr75)

Submodel Assignment

Detail Chem.
FPV-diffusion
FPI-premixed
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Piloted turbulent partially-premixed DME jet flame
Cases
 PEC-64 (λ = 0.64, FPV)
 PEC-8   (λ = 0.08, FPV / FRC)
 PEC-0   (λ = 0.00, FRC)

FRC

FPV
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Piloted turbulent partially-premixed DME jet flame
Cases

PEC-64 (λ = 0.64, FPV)
PEC-8   (λ = 0.08, FPV / FRC)
PEC-0   (λ = 0.00, FRC)
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Piloted turbulent partially-premixed DME jet flame
Radial profiles
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Piloted turbulent partially-premixed DME jet flame
Comparison of PEC-8 and and PEC-32



Application to Complex 
Combustor

E V A L U A T I O N  O F  M O D E L  
C O M P L I A N C E
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Referee gas turbine combustor
Case setup
 NJFCP referee combustor 
 Pressure: 2.07 bar
 Injection system with swirlers
 Fuel: Cat-C1, POSF11498 (C13H28)
 Equivalence ratio: 

 Mesh: 26 million elements 
 Chemistry: 26-species reduced 

mechanism**
 Candidate models:

› Flamelet/progress-variable (FPV) 
› Finite-rate chemistry (FRC) 

 QoI = {CO, CO2, H2, H2O, CH2O}

* Esclapez, L. et al.. (2017). Combust Flame, 181.
** Gao, Y., & Lu, T. (2017). 10th U.S. National Combust. Meeting.

*
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Referee gas turbine combustor

› 30% FRC (         )
› 40% reduction in cost









Limitations and Data-
assisted modeling

E V A L U A T I O N  O F  M O D E L  
C O M P L I A N C E
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Motivation
 High-fidelity simulations of turbulent reacting flows can incur high 

computational costs
 Use Pareto-efficient Combustion (PEC) framework for submodel

assignment
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Machine Learning Techniques
 PEC is mathematically rigorous but limited by reliance on local 

information regarding the chemical composition
 Data-driven techniques such as ML offer a generalized approach

Brunton et. al., Ann. Rev. Fluid Mech. (2020)
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Problem with ML-based regression
 Physical models versus data-driven models: conservation laws versus 

complex cross-correlations. 
 Data-driven models may violate physics, especially when extrapolation 

occurs.
 Data driven models are prone to numerical instability.

Solution?
 Use data-driven method to assist the selection of low-fidelity physics-

based model through classification
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Objective
 Flamelet Progress Variable (FPV) model cannot capture thermal 

boundary layers
 Use ML (Random Forest) to improve on FPV simulations at a lower cost 

than Finite-Rate Chemistry (FRC)

FRC

FPV
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Setup
• Based on GOX/GCH4 single element rocket combustor from Silvestri et. al.
• 2 × 105 cells, axisymmetric domain, with minimum cell size of 30 µm.
• Turbulent closure with with Thickened Flame and Smagorinsky models.

S. Silvestri, M. P. Celano, O. J. Haidn, and O. Knab, EUCASS (2015)
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Data-assisted LES
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Random forests

…

Input

Tree 1 Tree2 Tree 20

Prediction 1 Prediction 2 Prediction 20…

Final Prediction

Average all predictions
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Constructing training labels/output
Error between different submodels for 𝛼𝛼 = { �𝑇𝑇�,𝑌𝑌𝐶𝐶𝐶𝐶}

Training data for 

User defined threshold
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Feature/input selection
 Use Maximal Information Coefficient (MIC) to select most relevant input.
 MIC is a correlation measure for nonlinear data, similar to R2 measure
 MIC relating features with 𝜖𝜖{𝑇𝑇,𝐶𝐶𝐶𝐶}

𝐹𝐹𝐹𝐹𝐹𝐹

Choose top 5 features from both:
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A priori results
Apply trained RF on existing FRC LES data for submodel assignment
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A posteriori results



38

A posteriori results

Temperature vs radius (x = 280 mm) CO mass fraction vs radius (x = 280 mm)

FRC usage vs user-defined threshold Cost vs user-defined threshold

20% to 30% cost 
improvements
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A posteriori results (modified configuration)
 For a modified configuration with 3x inlet mass flow rate
 Method demonstrates ability to generalize for different configurations
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Conclusions
 Developed a Pareto-Efficient combustion (PEC) framework for the general 

description of complex flame configurations
 PEC-input parameters

› Set of quantities of interest
› Set of candidate combustion models
› Penalty term balancing cost and accuracy

 PEC-model components
› Model selection
› Error assessment  manifold drift
› Coupling between subzones and different models

 Generalization using ML-techniques 
› Classification can be used to assign well-tested combustion models.
› Overall desired fidelity can be controlled during labelling.
› Data-assisted simulations outperform monolithic FPV and monolithic FRC. 

simulations in accuracy and cost respectively.
› Classification ensures stability and robustness. Conservation of properties 

is consistent. 40
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