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Film cooling

M A Formation of a thin film of cold
y . =
Y — fluid adjacent to the wall
L_x  Porle  boundarylayer ____ _---{0O wall heat flux reduction
""""" e SO0RLH achieved by a dual effect:

A Reduction of the local fluid temperature near the wall
A Reduction of wall temperature gradient due to BL

Po, To thickening
Film cooling (Fitt et al., 1985, 1994): effusion cooling vs transpiration cooling

Q Effusion cooling (Wittig et al. 1996, Baldauf et al. 2001): coolant

injected by localized holes
> 3D effects induced in the BL, which promote transition

> Typically used on gas-turbine blades (turbulent BL)

d Transpiration cooling (Meinert et al. 2001, Langener et al. 2011): fluid

injected through a porous material
> More homogeneous injection
> Higher effectiveness
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Purpose of direct numerical simulation

Understand the physics of blowing in hypersonic flow
through porous surfaces

Predict cooling performance - heat transfer rates
Estimate the effects on BL stability and transition
Validate results with experiments
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Numerical method for full Navier-Stokes
equations

Finite volume approach in a Cartesian reference system with embedded boundaries

Structured-adaptive-mesh-refinement (SAMR) algorithm (AMROC - Deiterding, 2005 &
2011): the Cartesian grid is locally refined by adding consecutive finer grid levels
during the iteration cycles (patch-wise refinement strategy)

Hybrid WENO-CD method up to 6% -order accurate for both inviscid and viscous
fluxes (Cerminara, Deiterding, Sandham, 201 8)

Central Differencing (CD) scheme used in the smooth regions:
E.g. for 6t -order, the numerical flux at the interfaces is evaluated as

-~

fixr = alfixs + fi—2) + B(fir2 + fim1) +7(fi + fit1)
a=1/60 B=-2/15 ~=37/60

3rd —order Runge-Kutta for time integration

Characteristic-based switch to a high-resolution WENO scheme to handle
discontinuities in a computationally efficient way (Hill and Pullin, 2004)
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Shock-capturing scheme

Weighted-essentialy-non-oscillatory - symmetric - order-optimized (WENO-
SYMOO) scheme (Martin et al. 2006)

Reduced dissipation (compared to 5th-order WENO-JS, Jiang and Shu 1996),
and 6th maximum formal order of accuracy, reached through:

1. Symmetrization: a fourth candidate stencil is added to the initial
(r=3)-points upwinded-biased candidate stencils of the WENO-JS

2. Optimal weights C,to guarantee 6th-order accuracy

r-th-order polynomial
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Scheme switch

Riemann problem is solved at each cell interface through Roe's
averaged state

Lax condition is applied to detect shock/rarefaction waves

lup tag| < |u* ta"| <|up £ag|

A threshold is applied to the residuals between the left/right state
and the intermediate state to select the strong waves and neglect
the weak ones (Ziegler et al., 2011)

Another threshold is applied to the function ¢(%) to allow WENO
only in the high pressure-gradient regions (Ziegler et al., 2011):
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Flat plate studies:
Flow conditions and domain set-up

« My, =5

OCk ____________________________
= Re, =12.6%x10° 1/m LE Sh _______________________
M, =
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X
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x* = distance from inflow in the

« TY=T', =524T; . .
w ad domain coordinate system

" Xo=127 mm
= X, =182mm

= x;,, =55mm



Initialization

From the inflow profile, the displacement thickness of the laminar
BL in the initial solution grows in the streamwise direction,

following the relation:

o Re
0 5’5

where A= 8.18 (for the present case) is a scaling factor from the

similarity solution.
The result for the initial state at all the x positions is:
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Validation case: slot injection with multi-
component gas effects

Air injection CO, injection
1.2 T 1.2 |
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Very good agreement with Keller
et al. (2015) results of cooling
effectiveness in a Mach 2.6 case




3D flat plate with blowing through finite slots

Grid size (base level) N, x N, x N, = 800 x 384 x 100
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Domain size L, X L, X L, =200 x 32 X 50
15 Width of the slot region =5 mm

>l Minimum cell sizes Ax = 0.125 mm,Ay =

o5k 0.0415 mm, Az = 0.25 mm (with 2 grid levels)
" Simulation run with 480 cores on Iridis 4

25 cluster (Soton HPC facility)
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3D flat plate with blowing through slots

y=1(@"=1mm)
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| wake
Horts_eshoe ! = Transition induced by breakdown of the main
zllor 'CeT " Edge vortices edge vortices downstream of x = 90 (x* =
ow-velocity (high-velocity 90 mm, ¥ = 217 mm)
streaks) streaks) » Wedge-shaped transition front spreading

downstream
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3D flat plate with blowing through slots
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Cooling performed mainly at the slot sides and along the wake _
Limited streamwise extent of the cooled region due to transition to turbulence‘ ES



3D results
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Oxford slot experiments

Characteristic length = 1 mm (BL displacement
thickness at inflow)

Ly =160,L, = 32,1, = 4 Ny X Ny, x N, = 3200 X 384 X 40
[, =0.2 .
1 7 Periodic b.c. Top view
extrgpolation outfloy b.c.
b.c. Periodic b.c.

Injection conditions:

1. no injection
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Transitional flow state

x107

LST to identify the most
unstable frequencies and
5o wavenumbers
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Model to reproduce instability
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Heat flux and effectiveness predictions

Effectiveness measure based on

Heat flux concentration
—#— Experiment --#--  Moderate 2D disturbance Axial distance from leading edge \ mm
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(Cerminara et al., Aerospace Science Technology, 2020)
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Modelling of porous material

Original project proposal assumed grain structures of >50um

Used material has grains <2um (cost of DNS in porous material increases by factor
approx. 254=390625)

Our approach: model the porous media flow using regular sphere/cylinder arrays of

resolvable mesoscopic size

Cylinders with radius of 200um, pressure contours
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Mesoscopic Darcy-Forchheimer model

42 Ap d? pU.L Ap qd d
<7+FRed>=TE=D—Fdrag Re, = . Ue = F RedzszeC(E)q

1 1jL ) y Ap_p(ReCu>2
= v ), P T =1£(o) pL

Objective: represent the pressure drop of micro-
structured material with larger cylinders

Idea is to vary d but maintain g LSRR AN,
Preliminary study follows approach of Lee and I
Yang (1997)

=
'
i
1
\

L

—&—Lee and Yang
102 £ |¥-present

1 1 | | | 1 1 1
0 5 10 15 20 25 30 35 40 45 50

R Q
% Zoom in: y-momentum in porous layer for d=12um ‘ o



Matching with experiment in terms of blowing
ratio, and rescaling to higher pore sizes

Quantifying integrated blowing ratio solution
(q) for the different pore/particle sizes:

Re = 1.67 d=24um d =48pum d = 96 um
d=12uym - q=3.8 x1073 | |

d=24uym - q=37 x107°

d=48um - q=3.6 x107°
d=9um - q=38x10"3

Simulation results show rescaling
capability from very small pore
sizes to higher scales in terms of
the D-F behaviour

Streamwise velocity
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Oxford ultra-high temperature ceramics
experiment

M=5, Re=12.6E6 1/m from Herman et al. HiSST (201 8)
Fporous=0.002, porosity 42% modelled with spheres of
diameter d=340um

pPo=1.3 pj,» to match blowing ratio

2000 x 300 x 100 mesh plus 2 levels refined factor 2

Velocity_v
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Coolant concentration from top and side view




Comparison with suitable slot case

Chose a slot case with comparable non-dimensional mass flow of injected
coolant d=pUA,,;
Fporous:o'ooz' Fejots =0.045,

dg =0.173, d =0.144

slots porous
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Conclusions

« A hybrid 6 order multi-species WENO/CD method in the AMROC
framework for DNS of hypersonic boundary layers with wall
injection has been implemented

« Method is efficient, robust and runs well on large parallel systems

« Have developed a novel mesoscopic model for flow through
porous structures that can be used with accurate hypersonic
boundary layer DNS, thereby avoiding resolving the O(1-2um)
structures of the manufactured material

« Validation cases for both slot injection and porous injection have
demonstrated a good agreement with available experimental
results

« Level of realism in order to model realistic flight conditions will

be increased further by supplementing the implementation with
« Transient surface heat conduction modelling
« Thermochemical and vibrational nonequilibrium models
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