

SFB TRR40 C3/C7 Experimental and Numerical Study of High-Frequency Combustion Instabilities

C7: <u>Wolfgang Armbruster</u>, Dr. Justin Hardi, Prof. Dr. rer. nat. Michael Oschwald C3: <u>Alexander Chemnitz</u>, Prof. Sattelmayer

Combustor Model "D" (BKD)

- Representative conditions:
 - Cryogenic propellants LOX/H2
 - 42 shear coaxial elements
 - Chamber pressure up to 80 bar
 - Thrust: up to ~ 24 kN
 - Power up to 90 MW
- Self-excited instabilities
 - 1T mode at 10 kHz
 - Driven by LOX injection-coupling
- Measurement ring with 8 p' sensors

Motivation: Injection-coupling

Wanhainen et. al. (1966)

Hulka and Hutt (1995)

Gröning et. al. (2016)

Klein et. al. (2019)

Martin et. al. (2020)

Kawashima et. al. (2010)

Nunome et. al. (2011)

Watanabe et. al. (2016)

Experimental Goals for FP3

- In general:
 - Gain a better understanding of injection-coupling
 - Prevent injection-coupling for future rocket engines
- Detailed objectives:
 - Identify excitation source for LOX post acoustics
 - Investigate energy transfer from oscillating flame into acoustic field
 - Understand 2D flame response to LOX post eigenmodes

Experimental Goals for FP3

- In general
 - Gain a better understanding of injection-coupling
 - Prevent injection-coupling for future rocket engines
- Detailed objectives
 - Identify excitation source for LOX post acoustics
 - Investigate energy transfer from oscillating flame into acoustic field
 - Understand flame response to LOX post eigenmodes
 - ightarrow 2D flame visualization needs to be realized

8

Optical Diagnostics Setup

BKD Test with Optical Access

Mean Flame Images

LP1

- 50 bar
- ROF 5

LP2

- 80 bar
- ROF 4.7

LP3

- 80 bar
- ROF 5.2

350

Flame Dynamics at 1T Mode

- 1T response
- OH*

• Blue Rad.

DFG

40

Flame Dynamics for LOX Modes

• Flame and LOX core response to excited LOX post eigenmodes in Blue radiation:

Published DLR Test Cases

C3: Stability Assessment

- Hybrid methodology
 - Integration by end of FP2
 - Continuous development

- Validation
 - C7: BKD
 - Cold-flow test rig

 Absorber characteristic specifications

Stability Assessment

- Hybrid approach
- Eigenvalue characterizes stability

Validation – Single Flame

- Static pressure
- Sc_t calibration

- OH* radiation
- Flame structure

Acoustics

• BKD OH* load point LP2

Cold Flow Test Rig

- Cold flow test rig
- Absorber ring

 T_1

• Split of T₁ mode

Mode Split Mechanism

Eigenfrequencies

Absorber Characteristic

Mode Split Mechanism

• Absorber characteristic induces mode split

Absorber Constraints

Operating Point

 Absorber design independent of chamber acoustics

Mean Flow

- Quasi one-dimensional
- Reproduces 1D profiles from single flame
 - Sound speed
 - Isentropic compressibility
- Fulfills Euler Equations

Radial Stratification

- Artificial flame structures
 - Equivalent 1D mean flows

 Variation of stratification amplitude

Summary

- Hybrid Methodology
 - Validation
 - OH* images
 - Acoustics
- Absorber Design
 - Constraint specification
- Stratification
 - Radial flame structures

TCDs $|\hat{P}|_{0}$ T_{1}^{D} $T_{1}^{D}C_{1}$ $T_{1}^{D}C_{2}$ \uparrow^{x}

Radiation Modeling

SFB TRR40 C3/C7 Experimental and numerical study of high-frequency

combustion instabilities

C7: <u>Wolfgang Armbruster</u>, Dr. Justin Hardi, Prof. Dr. rer. nat. Michael Oschwald C3: <u>Alexander Chemnitz</u>, Prof. Sattelmayer

