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Combustor Model „D“ (BKD)

• Representative conditions:

– Cryogenic propellants LOX/H2

– 42 shear coaxial elements

– Chamber pressure up to 80 bar

– Thrust: up to ~ 24 kN

– Power up to 90 MW

• Self-excited instabilities 

– 1T mode at 10 kHz

– Driven by LOX injection-coupling

• Measurement ring with 8 p’ sensors



Motivation: Injection-coupling

Wanhainen et. al. (1966)
Nunome et. al. (2011)Jensen et. al. (1989)

Rocketdyne
Kawashima et. al. (2010)

Hulka and Hutt (1995)
Watanabe et. al. (2016)

Klein et. al. (2019)

Gröning et. al. (2016)

Martin et. al. (2020)



Experimental Goals for FP3

• In general:

– Gain a better understanding of injection-coupling

– Prevent injection-coupling for future rocket engines

• Detailed objectives:

– Identify excitation source for LOX post acoustics

– Investigate energy transfer from oscillating flame into acoustic field

– Understand 2D flame response to LOX post eigenmodes
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Experimental Goals for FP3

• In general

– Gain a better understanding of injection-coupling

– Prevent injection-coupling for future rocket engines

• Detailed objectives

– Identify excitation source for LOX post acoustics

– Investigate energy transfer from oscillating flame into acoustic field

– Understand flame response to LOX post eigenmodes

 2D flame visualization needs to be realized
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Also valuable validation data for

numerical partners (C3)

Schulze et. al. 2016

Chemnitz et al. 2019



Optical Diagnostics Setup
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Photron

SA-Z

Photron

SA5

Blue Filter 

436±5 nm

OH* Filter 

310±5 nm

Image 

intensifier

Dichroic

mirror

Combustor

BKD

Optical access window
• OH* and blue radiation

• 60,000 FPS

• Synchronized cameras



BKD Test with Optical Access

10



Mean Flame Images

OH* Blue

LP1 

• 50 bar

• ROF 5

LP2

• 80 bar

• ROF 4.7

LP3

• 80 bar

• ROF 5.2
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Flame Dynamics at 1T Mode

• 1T response

• OH*

• Blue Rad.
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Flame Dynamics for LOX Modes

• Flame and LOX core response to excited LOX post

eigenmodes in Blue radiation:

• LOX Post 1L

• LOX Post 2L
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Published DLR Test Cases
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https://www.ist.rwth-aachen.de/cms/IST/Forschung/Open-TestCases/~bvvsb/DLR-Open-Testcases/

Thank you for your attention!

https://www.ist.rwth-aachen.de/cms/IST/Forschung/Open-TestCases/~bvvsb/DLR-Open-Testcases/
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C3: Stability Assessment
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• Hybrid methodology

 Integration by end of 

FP2

 Continuous development

• Validation

 C7: BKD

 Cold-flow test rig

• Absorber characteristic 

specifications
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Stability Assessment
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• Hybrid approach • Eigenvalue 

characterizes stability

Single Flame 

Simulation
Mean Flow

Flame 

Dynamics

LEE 

Eigensolution

Ω = 𝜔 + 𝑖𝛼e.g. 𝑛 − 𝜏 Modell

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
𝑆𝑜𝑢𝑛𝑑 𝑆𝑝𝑒𝑒𝑑

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑚𝑖𝑛 𝑚𝑎𝑥



• Static pressure

• Sct calibration

• OH* radiation

• Flame structure
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LP1

LP2

Validation – Single Flame

LP2



Acoustics

• BKD OH* load point LP2
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Cold Flow Test Rig
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• Cold flow test rig

• Absorber ring 

• Split of T1 mode



Mode Split Mechanism
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Eigenfrequencies Absorber Characteristic



Mode Split Mechanism
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• Absorber characteristic induces mode split



Absorber Constraints

• Absorber design independent of 

chamber acoustics
25

Damping Rate Operating Point
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• Quasi one-dimensional

• Reproduces 1D profiles from single flame

– Sound speed

– Isentropic compressibility

• Fulfills Euler Equations

Mean Flow
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• Artificial flame structures
– Equivalent 1D mean flows

• Variation of stratification 

amplitude

Radial Stratification
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Summary

• Hybrid Methodology

 Validation

 OH* images

 Acoustics

• Absorber Design

 Constraint specification

• Stratification

 Radial flame structures
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TCDs

Radiation Modeling

Absorber Modeling
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