
Chair of Aerodynamics and Fluid Mechanics
TUM School of Engineering and Design
Technical University of Munich

Implementation of static mesh refinement in JAX-FLUIDS: A fully-differentiable
high-order CFD solver for compressible two-phase flows
Semester / Master’s Thesis

Flows with immersed boundaries (e.g., the flow around an airfoil) or material interfaces (e.g., a helium
bubble in air, see Fig. 1 C)) have varying spatial resolution requirements. The flow field around the
region of interest should be highly refined so that all important flow features can be accurately repre-
sented. To increase computational efficiency, regions with less complex dynamics can be resolved much
coarser. A simple but effective way for static mesh refinement is a multi-block based strategy, see Fig.
1 A). For example, this refinement strategy is often used in the study of shock-bubble interactions, see
Fig. 1 B). I.e., the region in which the shock interacts with the bubble is highly refined compared to the
periphery of the computational domain.

In this work, we will implement a multi-block based mesh refinement strategy in our in-house computa-
tional fluid dynamics (CFD) code JAX-FLUIDS. JAX-FLUIDS is a differentiable high-performance CFD
code written entirely in the JAX Python package and runs on CPU/GPU/TPU. The array-based program-
ming paradigm in JAX poses novel and exciting challenges for CFD practitioners.

Figure 1: A) Schematic of multi-block based mesh refinement. B) Schematic of the computational
domain of a shock-bubble interaction. Taken from Diegelmann et al. 2016. C) Flow field of a shock-
bubble interaction.

Tasks

• Familiarize yourself with the JAX-FLUIDS CFD code.
• Implement multi-block mesh refinement.
• Run single and two-phase fluid simulations and analyze the computational performance benefit.
• Optional: Couple the mesh refinement with GPU parallelization of JAX-FLUIDS.

https://arxiv.org/pdf/2203.13760.pdf
https://github.com/google/jax
https://doi.org/10.1016/j.combustflame.2015.10.016


Requirements

• Programming experience in Python.
• Interest in computational fluid dynamics / partial differential equations.
• Beneficial: Applied CFD, Turbulent Flows, Numerical Methods for Conservation Laws.

Contact

Deniz Bezgin deniz.bezgin@tum.de and Aaron Buhendwa aaron.buhendwa@tum.de.

mailto:deniz.bezgin@tum.de
mailto:aaron.buhendwa@tum.de

