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Motivation

In quantum computing, special properties such as quan-
tum entanglement and quantum state superposition are
used to develop algorithms that are superior to their
classical counterparts in terms of efficiency and speed.
Quantum advantage has been proven for algorithms re-
garding unstructured search, solving linear systems of
equations or factorization of large prime numbers. This
raises the question whether other areas such as CFD
could benefit from the potential speed up.

Objectives

The objective is the further development of the stream-
ing step for the existing implementation of the in house
quantum Lattice-Boltzmann solver. Two different ap-
proaches should be considered. In the first approach
a quantum Fourier transformation is used to perform
the streaming step in the Fourier basis [2]. The sec-
ond approach improves the existing implementation by
applying parallelized streaming [1]. In the end the imple-
mented streaming operator will be quantified in terms of
efficiency.

The positive and negative shift operators are inverse to each other and a application in series yields the identity
matrix. The two operators impose symmetric boundary conditions. The quantum circuit for the positive shift
operator P and negative shift operator N acting on the whole state vector is shown in figs. 8 and 9.

| i P =

. . .

. . .

. . .

...

. . .

|q0i X

|q1i
|q2i

...

|qn�1i
Figure 8: Quantum circuit for the implementation of the positive shift operator.
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Figure 9: Quantum circuit for the implementation of the negative shift operator.

The shift operator must be applied as controlled gate to apply the streaming step only on a subspace containing
the respective population. The quantum circuit for the D1Q3 case is given in fig. 10. It should be noted, that |qxi
are data qubits that contain probability distribution functions fi and |qn�2i , |qn�1i are control qubit which map to
the respective population. For the D2Q5 set additionally data qubits and control qubits are needed. The data
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Figure 10: Quantum circuit for the implementation of the one-dimensional streaming operator. qx denotes the qubits, which
store the field in the x-axis and qn is the most significant qubit in the qubit register.

qubits for the y-coordinates are summarized as
��qy

↵
. A shifting of the entries in the y-axis is performed by applying

the shift operators to the
��qy

↵
qubits. The corresponding quantum-circuit for the shift operation for the D2Q5 set

is shown in fig. 11. An extension to 3D and other velocity sets is straightforward applicable with the presented
standard shift operators. It should be noted that with the streaming operators P and N all common velocity sets
can be implemented when conditioned and applied on the right qubits.

3.4 Updating the macroscopic variable

In this last step the state of the macroscopic variable of the next time step is calculated. This is done by summing
up the probability distribution functions as shown in eq. (7). This is performed by a sequence of swap-gates and
hadamard gates, where the swap-gates are used to rearrange the distribution functions and afterwards the addition
of the states using hadamard gates is performed. The quantum circuit is only dependent on the velocity set and
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Figure 1: Quantum circuit of the positive streaming operator.

Requirements

• Good programming skills in Python

• Mathematical proficiency

• Ability to work independently

• Beneficial: Basic knowledge in Quantum Com-
puting and the Lattice-Boltzmann method

Tasks

• Familiarize yourself with the existing Quantum
Lattice-Boltzmann solver

• Implementation of the streaming operator as a
quantum algorithm

• Validate and test your implementation

• Evaluate the implemented streaming operator in
terms of efficiency
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