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Thermo-Acoustic Growth Rate Determination
from Numerical and Experimental Data for

Rocket Engine Applications

By A. Chemnitz, N. Kings, T. Sattelmayer†
N. Blanco, J. Hardi, M. Oschwald‡

E. Boujo, G. Bonciolini AND N. Noiray¶

The thermoacoustic stability behavior of a rocket engine, i.e. the interaction of com-
bustor acoustics and heat release, is characterized by the damping or growth rates
describing the temporal development of the chamber pressure when displaced from its
equilibrium value. This report tackles the computation of this quantity from experimental
and numerical data. The test case under consideration is a multi-injector H2/O2 rocket
combustion chamber, showing an instability of the 1st transverse mode at certain load
points. The numerical modeling is based on the Linearized Euler Equations with flame
feedback included via a source term. For the calculation of damping rates, Lorentzian
and exponential fitting are used along with statistical parameter extraction based on the
Fokker-Planck equation. These methods differ in their suitability for signals of different
type (stochastic/deterministic) and stability behavior. Together, they cover all the cases
studied in this work. The results revealed the applicability of the Fokker-Planck approach
to certain experimental load points and provided an assessment of the parameter de-
pendence of the other two extraction methods. Thereby, the Lorentzian fit appears to be
more robust regarding the studied influencing factors.

1. Introduction
Ensuring stable operating conditions in the combustion chamber is a crucial issue for

the development of rocket engines. The occurrence of an instability, i.e. the back cou-
pling and mutual amplification of chamber acoustics and heat release can ultimately
lead to the destruction of the whole engine. The quantitative evaluation of a combustor’s
damping rate is a key aspect in judging the stability of an engine. The final goal is a
set of consistent extraction methods that are tailored to the respective characteristics
of numerical and experimental data and allow for a reliable comparison of the obtained
damping rates. In a first step, the application of different damping rate calculation meth-
ods to suitable numerical and experimental signals has been tested. The initial results
are covered in this report.
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The test case studied is a multi-injector H2/O2 combustor, which shows stable or unsta-
ble operation, depending on the load point. Focus is placed on the dominant 1st trans-
verse mode. Thereby the different nature of the numerical and experimental signals
needs to be accounted for. Particularly, in the experiment an unstable signal quickly
reaches a limit-cycle due to non-linear saturation effects, while the numerical simula-
tion base on the Linearized Euler Equations (LEE) and thus predict unlimited growth.
Furthermore, turbulence leads to stochastic forcing of the combustor in the experiment.
This is not included in the numerical model, which results in deterministic signals. These
differences need to be accounted for in the data processing, while at the same time
maintaining comparability between the extracted results.
In this work, different damping rate calculation procedures are tested on rocket engine
data, giving an overview of the influencing parameter of the respective methods and the
current progress regarding their usage for evaluation of transverse combustor modes.
The different extraction methods are described in the next section. Then, after an outline
of experimental and numerical data generation, the results obtained for these signals are
presented and discussed.

2. Damping Rate Extraction Methods
Various approaches are in use to obtain the thermoacoustic growth rates from a sig-

nal. In this section, three methods based on Lorentzian fit, exponential fit and Fokker-
Planck equation, are introduced. The applicability of the different methods depends on
several aspects. First, the nature of the signal is of relevance. As outline before, the nu-
meric approach used in this work produces deterministic signals with unlimited growth
for the unstable cases. In contrast, the experimentally recorded pressure gives a sta-
tistical signal and approaches a limit cycle with comparatively small deviations of the
pressure from the corresponding equilibrium value. Thus, the evaluation of damping
rates needs to be based on transient signals for the numerical as opposed to limit cycle
conditions for the experimental case. The second factor to be considered is the stability
behavior. The widely used Lorentzian fit is applicable to decaying oscillations only, lim-
iting its use to the evaluation of stable load points. In contrast, the Fokker-Planck and
exponential fitting methods are appropriate for both, stable and unstable conditions. The
respective methods are outlined in the following.

2.1. Lorentzian Fitting
The Power Spectral Density (PSD) of a damped harmonic oscillation possesses a char-
acteristic shape, which is most significant at the frequencies neighboring the oscillation
frequency. This profile corresponds to a Lorentzian curve, described via the equation [1]

PSD ∝ 1

(ω − ω0)2 + α2
D

. (2.1)

The damping rate αD corresponds to the curve’s half width at half maximum. It can be
obtained by fitting the Lorentzian curve to the PSD of the signal. However, this approach
is only applicable to stable load points.
For the fitting procedure, several aspects have to be taken into account. First, the os-
cillation frequency ω0 can be either set fixed, based on the frequency content of the
signal, or left as free parameter. The latter has been chosen in this work, since fitting
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the eigenfrequency allows to increase the accuracy of the fit. It partly compensates for
the limited frequency resolution of the PSD and to deal with the distortion of the signal
via noise. Furthermore, the range of the PSD considered for the fitting is of relevance.
Particularly eigenmodes located at frequencies close to that of the mode of interest can
distort the shape of the PSD via the superposition of their own frequency content.

2.2. Exponential Fitting
Damping rate extraction via exponential fitting directly evaluates the temporal develop-
ment of the pressure signal. Thereto, a short-time Fourier transform is applied: The data
are subdivided in subsequent, potentially overlapping windows, each of which a Fourier
transform is taken of. From the resulting spectra, the amplitude at the eigenfrequency of
interest is taken and an exponential fit is applied:

A = A0e
−αDt . (2.2)

This method can be used for both, stable and unstable conditions but requires the signal
to be transient, i.e. not at limit cycle or decayed. Several parameters can influence the
results obtained with this method. Most imminent are overlap and width of the windows.
The latter also influences the frequency resolution of the spectrum and thus the accu-
racy the amplitude can be determined with. Furthermore, a filter can be applied to the
data within the single windows.

2.3. Fokker-Planck Approach
The stochastic nature of experimental signals and the measurements at limit cycle con-
ditions do not allow for the application of exponential fitting. While Lorentzian fitting is
possible for stable load points, a general approach is the system identification using a
Fokker-Planck equation. The fundamentals of this approach are outlined in the follow-
ing, before the actual extraction procedure is described.

2.3.1. Fundamentals
We briefly recall the description needed for the system identification; for more details,

see [2]. In annular combustors, the acoustic pressure at a given location (fixed axial and
radial positions (z, r)) can be written in terms of two fixed orthogonal shape functions
and two time-dependent coefficients (modal amplitude):

p(t, θ) =
∑
n

ηn,a(t) cos(mθ) + ηn,b(t) sin(nθ) (2.3)

where θ is the azimuthal position. If thermoacoustic modes have well separated frequen-
cies, one can focus on one mode at a time. In particular, if one mode is dominant:

p(t, θ) ' ηn,a(t) cos(nθ) + ηn,b(t) sin(nθ). (2.4)

In the following we consider n = 1, which corresponds to the 1st transverse mode.
Inserting this decomposition into the wave equation, considering linear acoustic damp-
ing α, using a simple model of flame response (linear and cubic heat release rate re-
sponse to acoustic forcing, Q = βp− κp3), and accounting for turbulence-induced forc-
ing with stochastic terms ξ(t), one obtains a set of second-order stochastic differential
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equations for the two oscillators:

η̈a + ω2
nηa = (β − α)η̇a −

3κ

4

(
η̇a(3η2a + η2b ) + 2η̇bηaηb

)
+ ξa, (2.5)

η̈b + ω2
nηb = (β − α)η̇b −

3κ

4

(
η̇b(3η

2
b + η2a) + 2η̇aηbηa

)
+ ξb, (2.6)

where the ξi are independent white noise sources of intensity Γi, i.e. 〈ξi(t)ξi(t + τ)〉 =
Γiδ(τ). The aim of system identification is to estimate the system parameters: linear
growth rate ν = −αD = (β − α)/2, nonlinear saturation term κ and noise intensities Γi.
It is convenient to express the modal amplitudes as:

ηa(t) = A(t) cos(ωnt+ ϕa(t)), ηb(t) = B(t) cos(ωnt+ ϕb(t)). (2.7)

Due to the stochastic forcing, the oscillation amplitudes A(t), B(t), and phases ϕa(t),
ϕb(t) are not constant but rather fluctuate in a random fashion. Typical operating con-
ditions are such that (2.5)-(2.6) are close to simple harmonic oscillators, η̈ + ω2

nη = 0.
Therefore, the envelopes A(t), B(t) vary slowly compared to the acoustic period 2π/ωn.
Taking advantage of that and averaging (2.5)-(2.6), one obtains a set of three first-order
stochastic differential equations for the envelopes A(t), B(t) and the phase difference
φ(t) = ϕa − ϕb. This if further reduced to two equations by using the change of variable
Ǎ = A

√
2 + cos(2φ) and B̌ = B

√
2 + cos(2φ):

Ȧ =

D
(1)
A︷ ︸︸ ︷

νA− 3κ

32
(3A2 + B̌2)A+

Γa
4ω2

nA
+ζa(t), (2.8)

Ḃ = νB − 3κ

32
(3B2 + Ǎ2)B +

Γb
4ω2

nB︸ ︷︷ ︸
D

(1)
B

+ζb(t), (2.9)

where the ζi are independent white noise sources of intensity Γi/2ω
2
n.

Figure 1 shows an example of time signals, and corresponding spectra. The fast os-
cillation of the modal amplitudes and the slow fluctuation of the envelopes are clearly
visible. Two characteristic regimes are shown in figure 2: mainly standing, when one
amplitude is dominant, and mainly rotating, when both amplitudes have the same order
of magnitude.

3. Extraction Method
With the Langevin equations (2.8)-(2.9) a Fokker-Planck equation is associated, which

governs the evolution of the probability density function (PDF) P (A,B, t). This equation
is a convection-diffusion equation whose drift coefficients D(1)

A , D(1)
B (defined in (2.8)-

(2.9) above) and diffusion coefficients D(2)
A = Γa/2ω

2
n, D(2)

B = Γb/2ω
2
n are also called

the first and second Kramers-Moyal (KM) coefficients. They can be estimated from time
signals A(t), B(t):

D
(k)
A (A, B̌) = lim

τ→0

1

k!τ

∫∫
(a−A)kP ({a, b̌}t+τ |{A, B̌}t) dadb̌, k = 1, 2, (3.1)

where P ({a, b̌}t+τ |{A, B̌}t) is the conditional transition probability (probability that the
state is {a, b̌} at time t + τ knowing that it was {A, B̌} at time t). A similar equation
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FIGURE 1. Left: time signals of acoustic modal amplitudes ηa(t), ηb(t) and envelopes A(t), B(t).
Right: frequency spectra of ηa(t) and ηb(t).

FIGURE 2. Top: standing regime (A� B). Bottom: rotating regime (A ' B). Dashed lines: fixed
shape functions cos(θ), sin(θ). Color: acoustic pressure field ηa(t) cos(θ) + ηb(t) sin(θ).

FIGURE 3. Illustration of the parameter identification method: envelopes are time shifted and the
conditional transition probability is calculated (here illustrated with A(t) only for simplicity), which
allows one to compute the KM coefficients (3.1).

holds for D(k)
B (Ǎ, B). The method is illustrated in figure 3. Comparing the KM coeffi-

cients calculated from time series with their analytical expressions, one can identify the
parameters ν, κ, Γi.

In practice, it is not possible to compute exactly the limit when τ → 0 and one needs
to extrapolate values obtained for finite time shifts τ . If the sampling frequency is not
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FIGURE 4. BKD test configuration; overview (left) and HF measurement ring (right) [4]

high enough, or if time signals are band-pass filtered to isolate the mode of interest,
then this extrapolation is non trivial. The work carried out during this summer program
consisted in extending the method proposed in [2], to improve its robustness and ac-
curacy. A new code was developed, with a fast, rigorous and modular implementation.
In the ETH code, extrapolation for one mode is conducted accounting for the amplitude
distribution of the second mode as well. In contrast, the approach by the DLR carries
out the Fokker-Planck analysis for the A mode at a single value of B̌ for simplification.
There, the modal value is chosen since it has the most data.

4. Evaluation Data
For the damping rate extraction, experimental and numerical data for a LOx/H2 com-

bustion chamber, termed BKD, are studied. Four load points are considered here, with
LP1 and LP3 showing stable operation and LP2 and LP4 being unstable. Details on the
load point specifications can be found in [3]. In the following, the experimental setup is
introduced, followed by an outline of the numerical approach.

4.1. Test Case
The DLR facility at Lampoldshausen, Germany features a test bench where combustion
chambers simulating rocket engines can be operated under realistic conditions. Scien-
tific studies of HF instability focus on laboratory scale combustors. BKD is a naturally
unstable, cylindrical combustor operating up to 80 bar and features 42 LOx/H2 flames
(figure 4 (left)). Access of dynamic pressure sensors is limited to a measurement ring
close to the chamber face plate as shown in figure 4 (right) due to high downstream tem-
peratures. The first-tangential (T1) mode of BKD has been identified as the dominant
mode at unstable operating points.

4.2. Numerical Modeling
Numerically, the development of flow perturbations is calculated via the Linearized Euler
Equations (LEE). A quasi one-dimensional mean flow is generated, reproducing the
axial development of the averaged sound speed and isentropic compressibility. With
this mean flow, the LEE are solved with an enhanced version of the finite difference
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code PIANO, originally developed by the DLR and adapted for the current scope of
application at the Institute of Thermodynamics, TUM. Flame feedback is accounted for
via a source term in the energy equation. The complete set of equations reads:

∂ρ′

∂t
+ ui

∂ρ′

∂xi
+ ρ

∂u′i
∂xi

+ ρ′
∂ui
∂xi

= 0 (4.1)

∂u′i
∂t

+ uj
∂u′i
∂xj

+ ûj
ui
∂xj

+
1

ρ

∂p′

∂xi
− ρ′

ρ2
∂p

∂xi
= 0 (4.2)

∂p′

∂t
+ ui

∂p′

∂xi
+ u′i

∂p

∂xi

+ κ

(
p
∂u′i
∂xi

+ p′
∂ui
∂xi

)
−
(
pu′i + p′ui
κ− 1

)
∂κ

∂xi
= (κ− 1)q̇′ .

(4.3)

For the flame feedback, a generic approach is used:

q̇′ = c0 ·
p′(t− τ)

p
. (4.4)

The value of c0 ([c0] = W
m3 ) has been set constant across the field and the delay time

τ has been designed to match the phase of the flame transfer function given in [5] at a
frequency of 10000 Hz, approximately the frequency of the first transverse mode. This
simple flame model has been applied for the unstable LP4, where it provided strong
feedback. To ensure the reproduction of the correct stability behavior for the stable LP3,
the flame response has been excluded from the corresponding simulation.
Regarding boundary conditions, the inlet is treated as energy-neutral and the outlet as
non-reflective, while all walls are modeled as sound-reflecting. The simulations have
been conducted at a constant physical time step of dt = 1 · 10−7 s. To excite the cham-
ber acoustics, a pressure disturbance initial condition is set eccentrically in the front
chamber section.

5. Results
In this section, the current status of the three groups working towards a reliable pro-

cedure for the extraction and comparison of damping rates is presented. On the exper-
imental side, slightly different versions of the parameter extraction method described in
section 2.3 have been applied to the data. Numerically, the stable LP3 and the unstable
LP4 have been studied. Exponential and, for LP3, Lorentzian fitting have been applied,
varying several of the parameters described above to yield the robustness of the ap-
proaches.

5.1. Experimental Evaluation
For the application of the Fokker-Planck method to transverse combustor modes, a val-
idation of the approach has been conducted first. Then, the parameter extraction is
evaluated for the four load points, yielding different levels of applicability. In addition, the
slightly modified approach used by the DLR has been applied to a load point similar
to LP1 and the extracted parameters are compared to results obtained from Lorentzian
fitting.
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5.1.1. Validation with Synthetic Signals
Before applying the new code to experimental data, a validation was performed on

synthetic signals, with known parameters. Equations (2.5)-(2.6) are implemented in a
Simulink model. It provides time signals ηa(t), ηb(t) whose envelopes A(t), B(t) and
phase difference φ(t) are extracted with the Hilbert transform. The range of parameters
was chosen so as to reproduce qualitative characteristics of experimental data.
Preliminary results give a fair agreement between identified and actual parameters,
showing the effectiveness of the method. In order to gain knowledge on the influence
of the pre-processing on the parameter identification, several sensitivity studies were
conducted on the synthetic signals. Some examples are the study of the influence of
filter bandwidth, or the range of examined amplitudes and time delays, or the function
adopted for the extrapolation to τ = 0. Other parameters, such as the signal sample
frequency, were found to influence the identification process.

5.1.2. Application to BKD Data
The developed parameter identification method was finally applied to the BKD exper-

imental data. In particular, the points LP1 to LP4 were analysed. From the available
8 microphone signals, modal amplitudes ηa(t), ηb(t) are reconstructed with a multi-
microphone method. Since in these signals many modes coexist, a bandpass filter was
applied around the one of interest. Like in the case of synthetic signals, different filter
sizes and other pre-processing parameters were adopted. The aim is in this case to
verify if the identification converges to a certain value for some range of pre-processing
parameters. The identified parameters were then injected in the Simulink model, and
the generated signals compared with the experimental data to check a posteriori the
accuracy of the parameter identification. The process is illustrated with LP2 in figure 5.

FIGURE 5. Evaluation of LP2. From left to right: acoustic modal amplitude ηa(t) before and after
band-pass filtering; frequency spectrum; and stationary joint PDFs P (A,B) from experimental
measurements and from synthetic signals simulated a posteriori with the identified parameters.

From the analysis of the load points, the following results were obtained:
LP1: The main mode is not clearly isolated: the significant spectrum spans over a

broad range of frequency. The system is linearly stable in this point;
Despite that, a fairly stable identification was obtained (νa ' νb ' −200 rad/s);

LP2: Study on the influence of filter bandwidth and examined amplitudes range. Con-
vergence was observed for a certain range ((νa, νb) ' (+110,−150) rad/s);
The synthetic replica presents very similar dynamics and statistics;

LP3: The system is unstable, but the spectrum features three peaks within 0.1f0.
Therefore, no robust identification is possible;

LP4: Well-isolated peak, highly unstable point;
Peculiar phase statistics (peaks at 0 and −3π/4). Almost standing mode;
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FIGURE 6. First (left) and second (right) transition moments for different amplitudes of Ǎ at the
modal value of B̌; large dots: results from Lorentzian fitting; small dots: extrapolated values

Quite robust identification, but the synthetic replica does not reproduce the same dy-
namics, especially in terms of phase (the synthetic features two peaks at ±π/2).

As described in section 2.3, an alternate extrapolation approach has been used for
the Fokker Planck method as well. It has been applied to a stable load point similar to
LP1, but with significantly less interference from neighbouring modes. This allows for
a direct comparison of the predictions by the Fokker Planck method to the results of
a Lorentzian fit, which can be used in this case to precisely extract the parameters of
interest. Since extrapolations used to obtain the limits to zero of the probability transi-
tion moments are carried out for a single value of the modified envelope amplitude of
the orthogonal mode B̌ (cf. section 2.3.1), the results can be clearly shown for selected
amplitudes of the A mode. The first and second transition moment computations are
shown in figure 6 along with optimized fits used to capture the limit to zero behavior of
these moments. The corresponding values of the A mode are given in figure 7. The re-
sults of the application of the Fokker Planck parameter extraction method to the A mode
are compared with those obtained with the Lorentzian fit in table 1. The second transi-
tion moment computations under-predict the noise intensity by 19% if an average of the
extrapolated values is taken. This may be due to the presence of neighboring modes
in the analysis. Both Γa and νa can be obtained by matching the analytical expression
of the drift coefficient to the extrapolated value of the first transition moment for each
considered amplitude. An optimization over all the amplitudes over-predicts Γa by 14%,
and over-predicts the absolute value of the growth rate by 8%.

5.2. Numerical Results
The numerical computations show a clear, standing first transverse mode for both cases.
The mode orientation is determined by the location of the initial excitation. Correspond-
ingly, no mode decomposition is necessary for the damping rate extraction. The eval-
uated signal is taken at one of the pressure anti-nodes, close to the faceplate. In the
following, damping rates are computed for the stable LP3, whereby the influence of the
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FIGURE 7. Histogram of amplitudes

TABLE 1. Results

Method Noise Intensity, Growth Rate,
bar2s−4/Hz rad/s

Lorentzian 1.35 · 1012 −2124
Average 1.09 · 1012 -

Optimized 1.54 · 1012 −2287

FIGURE 8. Damping rates obtained for LP3 from
short time FFT via exponential fitting

TABLE 2. Damping rates for LP3

Exponential, Lorentzian,
rad/s rad/s

1839− 2232 1991− 1998

extraction parameters is studied. Subsequently, the unstable load point LP4 is examined
using exponential fitting.

5.2.1. LP3
Since LP3 is stable both, exponential and Lorentzian fitting can be applied to this load

point. The results of the former are shown in figure 8 for different window sizes and rela-
tive overlap. The most significant influence is observed for the window width. This can be
explained via the associated frequency resolution. At low window widths, the spectrum
is not resolved fine enough to extract the signal content at the desired eigenfrequency
with sufficient accuracy. With increasing window width and thus frequency resolution, a
plateau is reached. Here, the damping rates still shows a dependency on the windowing
parameters, however it is much smaller than observed at low window widths. The de-
pendence of the damping rate on the overlap is comparable to the fluctuations occurring
at this plateau, showing no distinct trend. The range of calculated damping rates at the
plateau is given in table 2 A considerable range of the extracted damping rates is visible.
A possible factor playing a role for this behavior is the loss of temporal resolution at high
window widths.

Results of the Lorentzian fit with different frequency ranges considered are shown
along with fitted profiles in figure 9. The distortion of the PSD from its ideal shape by



Thermo-Acoustic Growth Rate Determination for Rocket Engine Applications 11

1,900

2,000

2,100

2,200

α
D
ra
d
/
s

0 1,000 2,000 3,000

9,100

9,120

9,140

9,160

width of frequency range, Hz

f 0
H
z

FIGURE 9. Damping rates and eigenfrequencies (left) for LP03, obtained from Lorentzian fitting
and fitted profiles (right)

neighboring modes is clearly visible. This affects the extracted damping rates as well
(figure 9 (left)). At wide frequency ranges a distinct dependence of the damping rates
on the fitting frequencies is visible. Likewise, at the lowest considered frequency range,
a sudden decrease in the computed damping rate is visible, related to the low number of
data points available for fitting. However, in the range between about 250 Hz and 800 Hz
a plateau forms, where the damping rate only weakly varies with frequency range, in-
dicating an appropriate choice for damping rate extraction. The respective values are
given in table 2. Regarding the frequency range, this method yields robust identifica-
tion. Compared to the results obtained from exponential fitting, the damping rates from
the Lorentzian fits are contained within the range predicted by the exponential approach.

5.2.2. LP4
The damping rates extracted via short time FFT from LP4 are shown in figure 10

(left). Strong growth rates are predicted, which are probably overestimated due to the
simple feedback model used. Unlike for LP3, no distinct dependence on the window
width is visible. However, at a size of about 20000 samples, several strong minima and
maxima occur at various values of overlap. This indicates that the damping rate should
be evaluated for longer windows, where a smaller variation with window size is present.
A comparison with results for the same case without flame feedback (figure 10 (right))
shows that for the then stable configuration the same characteristic behavior as for LP3
is obtained. Transition to the plateau value occurs at about the same window width as
the strong extrema for the unstable cases.

6. Conclusion
Damping rates have been extracted from experimental and numerical pressure data

of a rocket combustion chamber using Lorentzian and Exponential fitting as well as
Fokker-Planck parameter extraction. Numerical data were obtained from the solution of
the Linearized Euler Equation, resulting in different signal characteristics compared to
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FIGURE 10. LP4 damping rates from exponential fitting; with (left) and without flame feedback
(right)

the experiment.
The evaluation of experimental results using the Fokker-Planck approach revealed a
dependence of the applicability of this method on the load point under consideration. For
the stable LP1 growth rates of about −200 rad/s were identified and for LP2 +110 rad/s
as well as −150 rad/s for the respective modal contributions. The evaluation of the
additional load points will require further considerations. Parameter extraction for a load
point similar to LP1, evaluated with a different extrapolation method indicates stronger
damping with a growth rate of about −2287 rad/s and similar results when using the
Lorentzian fit. The reasons for the discrepancy between the different extraction methods
need to be studied further.
Numerically, LP3 and LP4 have been studied. It has been found that for the stable load
points, the Lorentzian fit yields more robust results compared to the exponential fitting.
The latter showed a significant influence of the window width, whereby a lower limit of
this parameter could be identified. For the unstable LP4, strong damping rates were
calculated, which is probably related to an overprediction of the simple flame model
included in the simulation.
Altogether, the results from Lorentzian and exponential fitting were in the same range,
indicating their principle applicability with further work needed for the robustness of the
latter. Likewise, some promising results were achieved, showing the potentiality of the
Fokker-Planck method. However, some of the analysed points cannot be processed with
the current tool and need further consideration.
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