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Stability analysis of hypersonic flow over a
backstep in chemical equilibrium

By J.M. Perez†, J.A. Franco‡, P. Paredes¶, S. Hein‡, V. Hannemann‡
AND V. Theofilis†

Universidad Politécnica de Madrid, Madrid, Spain

The purpose of this work is to shed light on the role of chemical equilibrium in the
global instabilities that arise in hypersonic non-parallel flows. As an example of sepa-
rated flow, the stability of temporally evolving disturbances on a hypersonic flow over a
backstep are examined by solution of the pertinent BiGlobal eigenvalue problem. The
flow conditions are unit Re′ = 6.6 × 106 1/m, boundary-layer edge temperature 350 K
and freestream Mach=10. The step height is taken to equal to the local displacement
thickness. At these conditions the two-dimensional laminar base flow is computed with
the full Navier-Stokes DLR-TAU solver.

Stability results at a given wave number of the perturbations in the homogeneous di-
rection show that the leading linear mode located around the recirculation bubble is un-
stable to modal perturbations when both perfect and real gas assumption is made. Real
gas effects increase the temporal growth rate of the leading mode, which corresponds
to a zero-frequency three-dimensional global linear instability, the analog of which in in-
compressible flow is well understood. The eigenvalue spectrum and the structure of the
leading mode for real and perfect gas are compared.

1. Introduction
Reentry vehicles are exposed to severe flow conditions as high heat loads. Therefore

they require the use of thermal protection. This implies complex thermo-chemical pro-
cesses that affect the heat flux on the body surface. Due to the lack of knowledge about
the origin of laminar-turbulent transition on parts of the vehicle surface, or the underly-
ing instabilities, very often this protection is oversized, implying an unnecessary excess
weight and consequent performance reduction. Given the high temperatures reached
on the body surface, where the boundary layer develops, experimental studies are pro-
hibitively expensive and one resorts to numerical simulations which provide information
about the physical process involved in laminar-turbulent transition. Turbulence leads to
larger heat fluxes than a laminar boundary layer due to the increased convective trans-
port and has a strong influence in the drag, thermal load and stability and therefore the
accurate prediction of this is a critical part of the aerodynamic design of hypersonic ve-
hicles. As conclusion, the study of laminar-turbulent transition in supersonic and hyper-
sonic boundary layers is important in the development of next generation of hypersonic
vehicles.
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However, hypersonic flows have attracted much less attention in the literature with
respect to laminar-turbulent flow transition, partly because of the complexity of the
flow fields involved, since at high temperature conditions, chemical reactions need to
be taken into account. Specifically the authors are not aware of any global instability
study at hypersonic flow conditions. In increasing temperature order, four possible flow
regimes exist: (a) At moderately high temperatures the air is a mixture of perfect gases.
(b) When the temperature increases the gas is a mixture of species at chemical and
thermal equilibrium. (c) The next flow regime chemical equilibrium is broken but thermal
equilibrium assumption still holds. (c) At high temperatures both thermal and chemical
equilibrium are not met.

Efforts that have applied classic linear instability analysis in order to arrive at predic-
tions on small-amplitude perturbation growth and correlate such results with transition
location at hypersonic flight speeds and accounting for real gas effects are limited to
one-dimensional, boundary-layer type of basic flows [7,8,14].

Using direct numerical simulations Mack [5] determined that whenever the relative
flow between the mean flow and the disturbance phase velocity is supersonic, a family of
inviscid acoustic disturbances at high frequency exists. The first of the higher frequency
modes is known in the literature as the second mode or the Mack mode. Later, Mack [6]
arrived to the following results for hypersonic flat-plate boundary layer transition using
linear stability theory: oblique three-dimensional viscous disturbances are dominant at
all supersonic Mach numbers below four which is an extension to high speeds of the
Tollmien-Schlichting instability, while a family of trapped high frequency acoustic modes
traveling inside the boundary layer by reflections between the wall and the sonic line
dominates at high Mach numbers. The acoustic instability discovered by Mack arises
when the edge velocity is sufficiently fast that disturbances can propagate downstream
at a subsonic speed relative to the boundary-layer edge velocity but supersonic relative
to the wall. This second instability was measured in different experiments, [2], [4] or [13]
and becomes more unstable that the first oblique mode for free-stream Mach numbers
bigger than four.

The study of these modes was recovered later by Malik [7] and Malik and Anderson
[8], who conducted the stability analysis of a zero-pressure-gradient flat plate boundary
layer at hypersonic regime including real gas at thermal and chemical equilibrium. These
authors were the first to calculate the real gas effects on hypersonic boundary layer
stability. For this end they studied two cases at Mach numbers, 10 and 15, and found that
the effect of considered real gas produce large differences in the temperature profile
in the boundary layer. They show that chemical equilibrium stabilizes the first oblique
mode and destabilizes the second mode. In this case, the size of the region of relative
supersonic flow increases in the cooler boundary layer, due to the lower speeds of
sound in that region. In addition, the second mode is shifted to lower frequencies. Later
Stuckert and Reed [14] studied the effect of chemical non-equilibrium on flow over an
axisymmetric cone.

By contrast, when the basic flow, collectively called complex here, is such that an
assumption of homogeneity in two or three spatial directions may not be made, classic
linear theory cannot be applied. Interesting flow phenomena arising either on account
of geometrical complexity, e.g. flow over protrusions, corners, steps or gaps, or because
of the interaction of a shock system with a laminar boundary layer over a flat plate
or a (plane or axisymmetric) wedge, all are beyond the scope of classic linear stability
theory. While the above is already true for supersonic flow, the hypersonic regime further
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compounds the problem, since as mentioned chemical reactions and their modeling
need to be taken into account. To-date, when laminar-turbulent transition of a complex
flow field need to be studied, one resorts to state-of-the-art direct numerical simulation
[9, 18]. It is worth to mention that [7, 14] studied also the effect of finite-rate chemistry
or non-equilibrium chemistry adding some equations for species conservation in the
classic local stability analysis of flat-plate boundary layers.

The present contribution discusses algorithmic developments to include real gas ef-
fects in stability equations without any restriction on spatial homogeneity. The phrase
real gas is used in the sense of aerodynamics where it typifies the high-temperature
effects rather than in the sense of classical physical chemistry where it has been used
for a gas in which inter-molecular forces are important due to high pressures and/or low
temperatures. The problem considered is the hypersonic flow over a backstep in chemi-
cal equilibrium where the five species model proposed by Park [11], which is valid up to
9000 K, is considered in the last case. This model becomes invalid when the ionization
of atoms start. These results are compared with the results obtained when perfect gas
approximation is considered, where internal energy and enthalpy are functions of the
temperature only. Before to this, verification is performed against spatial local stability
results of Malik and Anderson [8] in a zero-pressure-gradient flat-plate boundary layer
at Mach 10. In this way, the chemical model and inflow profile for the solution of the
backstep base flow are validated.

2. Problem description
The governing equations used are the time-dependent three-dimensional Navier-

Stokes equations for compressible fluids in dimensional form,

∂ρ∗

∂t
+∇ · (ρ∗u∗) = 0, (2.1)

ρ∗
[
∂u∗

∂t
+ (u∗ · ∇)u∗

]
= −∇p∗ +∇[λ∗(∇ · u∗)]

+ ∇ · [µ∗((∇u∗) + (∇u∗)T)], (2.2)

ρ∗
[
∂e∗

∂t
+ (u∗ · ∇)e∗

]
+ p∗∇u∗ = ∇ · (κ∗∇T ∗)

+ λ∗(∇ · u∗)2 +
µ∗

2
[(∇u∗) + (∇u∗)T]2, (2.3)

where u∗ is the velocity vector, ρ∗ the density, p∗ the pressure, T ∗ the temperature,
e∗ = c∗vT

∗ the internal energy, κ∗ the thermal conductivity, µ∗ the first coefficient of
viscosity, and λ∗ the second coefficient of viscosity. Note that using the Stoke’s law
λ∗ = −2/3µ∗ and the asterisk denotes dimensional quantities.

The Cartesian coordinates are denoted by x, y, and z to represent the streamwise
direction and the perpendicular plane to it, the normal and spanwise directions, re-
spectively. The non-dimensionalization is based on the freestream conditions. Lengths
are scaled by a reference length l∗r defined as the Blasius length at xh, velocity by
U∗r and temperature by T ∗r are defined from the boundary-layer edge at the step posi-
tion. The reference pressure is p∗r , the free-stream sound speed is denoted by s∗r , and
γ = c∗p,r/c

∗
v,r. The equation of state is given by the perfect gas relation p∗ = ρ∗RT ∗,

where R is the gas constant, which depends on the chemical composition of the gas.
The resulting dimensionless parameters are the Reynolds number, Re = ρ∗rU

∗
r l
∗
r/µ
∗
r ,
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FIGURE 1. Flow geometry for the backstep.

the Prandtl number to Pr = c∗p,rµ
∗
r/κ
∗
r , the Mach number M = U∗r /s

∗
r and the Eckert

number Ec = (U∗r )2/(c∗p,rT
∗
r ) = (γ − 1)M2.

2.1. Compressible fluid properties
2.1.1. Perfect gas

When a perfect gas is considered, the non-dimensionalized equation of state is

p =
1

γM2
ρT (2.4)

where the constant of perfect gases is fixed to γ = 1.4 and the Prandtl number Pr = 0.7.
The Sutherland’s law is used for the viscosity coefficient

µ = (T )3/2 1 + S

T + S
(2.5)

with µ∗s = 1.716 × 10−5 N s/m2 and S = 110.4 K/T ?r for air in standard conditions.
The dimensionless thermal conductivity of the medium is taken equal to the viscosity
coefficient κ̄ = µ̄.

2.1.2. Real gas
At certain flight conditions, mostly as a cause of high temperature, some molecular

species begin to dissociate due to aerodynamic heating and the perfect gas assump-
tion is no longer applicable and real gas effects need to be considered. Air cannot be
modeled as a perfect gas when vibrational excitation and chemical dissociation become
important. At pressure of 1 atmosphere, oxygen starts dissociating at 2000 K, Nitrogen
starts to dissociate at 4000 K and both atomic components start ionizing at about 9000
K. The equation of state for a real gas depend on its chemical composition. In addition,
the internal energy, viscosity laws and thermal conductivity coefficients are not solely
dependent on the temperature, but on the two thermodynamic variables considered.

Here, the gas properties, p∗, e∗, κ∗ and µ∗ as function of ρ∗ and T ∗ are calculated
using the TAU software. Air of 5 species, namely N2, O2, NO, N and O, is considered
next. Comparison with perfect gas is shown in Figure 2. The divergence of the gas
properties for perfect and real gas is evident as the temperature increases. p∗ and µ∗

for perfect gas start to deviate from the real gas solution at about T ∗ ≈ 2000 K, while
differences for e∗ and κ∗ are visible above T ∗ ≈ 1000 K.
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FIGURE 2. (a) log(p̄) (log(kg m/s2)), (b) ē (J/kg), (c) µ̄ (kg/(m s)) and (d) κ̄ (W/(m K)). Note that
(a) and (c) are plotted using a constant increment between iso-lines, while (b) and (d) use an
exponential increase of intervals between iso-lines.

FIGURE 3. Procedure followed in the stability analysis in the case of real gas calculation. As it
can be seen TAU provides both the base flow and the database used in the calculation of the
unknowns thermodynamic variables and coefficients.
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In this work, gas properties provided by TAU are tabulated, and Lagrange interpolation
is used to obtain the desired values for the stability analysis. Figure 3 shows the process
followed in the stability analysis when real gas is considered. Basically TAU provides the
base flow and some tables that are used by the stability code in order to calculate the
value of the thermodynamic variables and parameters for a real gas in thermal and
chemical equilibrium.

Once this information is available the next step requires the solution of the eigenvalue
problem associated with the modal stability analysis. To do this, a zoom near the step is
considered and the domain is splited into three domains. A C1 condition is imposed at
the connection between the different domains.

3. Hydrodynamic stability theory
3.1. Linearized Navier-Stokes equations

The vector of fluid variables q = (ρ, u, v, w, T )T is decomposed into a steady mean flow
q̄ and an unsteady small disturbance or perturbation q̃:

q(x, t) = q̄(x) + εq̃(x, t), ε� 1. (3.1)

The amplitude functions of thermal conductivity and viscosity coefficients, internal
energy and pressure are functions of temperature and density, and thus are written as

µ̃ = µ̄T T̃ + µ̄Rρ̃, (3.2)
κ̃ = κ̄T T̃ + κ̄Rρ̃, (3.3)
ẽ = ēT T̃ + ēRρ̃, (3.4)
p̃ = p̄T T̃ + p̄Rρ̃, (3.5)

where ( )T = ∂( )
∂T̄

, ( )R = ∂( )
∂ρ̄ . Also, second order derivatives with respect to temperature

and density arise from the spatial derivatives of previous thermodynamic variables. For
example the x-derivative of viscosity coefficient is written as

∂µ̃

∂x
=

(
µ̄TT T̄x + µ̄RT ρ̄x + µ̄T

∂

∂x

)
T̃ , (3.6)

+

(
µ̄RT T̄x + µ̄RRρ̄x + µ̄R

∂

∂x

)
ρ̃, (3.7)

where ( )TT = ∂2( )
∂T̄ 2 , ( )RT = ∂2( )

∂ρ̄∂T̄
and ( )RR = ∂2( )

∂ρ̄2 .
By introducing the previous decomposition of variables (3.1) into the governing equa-

tions (2.1-2.3) and neglecting the non-linear terms of O(ε2) and O(ε3), the linearized
Navier-Stokes equations (LNSE) are recovered.

The above generic discussion is applicable to any linearization of the governing equa-
tions following the decomposition of flow quantities (3.1). Furthermore, in modal linear
stability theory, the perturbation term is usually written as the product of an amplitude
function and a phase function, q̃ = q̂Θ. Table 1 summarizes the different instability
approaches arranged by increasing constraints to the basic flow. However, depending
on the dimensionality of the base flow analyzed, the resulting theoretical frameworks
involve numerical solutions that require orders-of-magnitude different levels of compu-
tational work for their solution.

The best known context of classic or local linear stability theory [6] assumes a single
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Assumptions Base Amplitude Exp(iΘ), Phase Function Θ

TriGlobal - q(x, y, z) q̂(x, y, z) −ωt

PSE-3D ∂zq� ∂xq, ∂yq q(x, y, z∗) q̂(x, y, z∗)
∫
β(z′)dz′ − ωt

BiGlobal ∂zq = 0 q(x, y) q̂(x, y) βz − ωt

PSE ∂xq� ∂yq q(x∗, y) q̂(x∗, y)
∫
α(x′)dx′ + βz − ωt

∂zq = 0

Local ∂xq = ∂zq = 0 q(y) q̂(y) αx+ βz − ωt
TABLE 1. Modal linear instability approaches arranged by increasing constraints to the basic flow

in-homogeneous spatial direction in both the basic flow and the amplitude functions,
indicated by y in the last line of Table 1. On the other hand, the linear (and non-linear)
stability of boundary-layer flows, in which a small but non-zero wall-normal velocity com-
ponent exists in the base flow and the dependence of the latter on the streamwise
coordinate, x, is much weaker than that along the wall-normal, y, can be studied by
the Parabolized Stability Equations (PSE). Unlike an EVP-based solution, PSE solve a
marching integration of the LNSE along the streamwise spatial direction, and is known
as a non-local instability analysis; [3] provides an introduction to the PSE. The remain-
ing three entries in Table 1 are collectively known as global linear theories [16]. They
may consider base flows which are inhomogeneous in two or three (rather than one)
spatial directions. The global stability theories are classified in BiGlobal, PSE-3D and
TriGlobal analysis. They denote analysis of base flows developing in two (BiGlobal) or
three (TriGlobal) inhomogeneous spatial directions. In-between, the PSE-3D concept
extends the classic PSE to flows depending strongly on two and weakly on the third
spatial direction.

3.2. Temporal and spatial stability analysis
The aforementioned LNSE can be written as initial-value-problem (IVP) in the form

BT
∂q̃

∂t
= AT q̃, (3.8)

and solutions to this system of PDEs are considered. The operators A and B are asso-
ciated with the spatial discretization of the LNSE and comprise the basic state, q̄(x) and
its spatial derivatives and the thermodynamic properties of the gas. In case of steady
basic flows, the separability between time and space coordinates in (3.8) permits intro-
ducing a Fourier decomposition in time through the expression q̃ = q̂ exp(−iωt), where
q̂ = (ρ̂, û, v̂, ŵ, T̂ )T is the vector of amplitude functions, leading to the generalized matrix
eigenvalue problem (EVP)

AT q̂ = ωBT q̂, (3.9)

in which matrices AT and BT discretize the operators AT and BT , respectively, and
incorporate the boundary conditions. This EVP represents a modal temporal stability



80 Perez, Franco, Paredes, Hein, V.Hannemann & Theofilis

problem in which the sought complex eigenvalue is ω = ωr + iωi, the real part being a
circular frequency, while the imaginary part is the temporal amplification/damping rate.

In certain problems, the study of the spatial development of perturbations is consid-
ered instead. In such cases, at least one homogeneous direction is assumed and the
disturbances obey the wave-like ansatz exp[i(βz − ωt)]. Here, the IVP (3.8) is rewritten
as

BS
∂q̃

∂x
= ASq̃, (3.10)

and the discretized version becomes a quadratic generalized matrix EVP

ASq̂ =

2∑
k=1

βkBS,kq̂. (3.11)

Here ω ∈ R is a real frequency parameter, while β ∈ C is the sought eigenvalue, the
real part of which is related with the periodicity length along the homogeneous spatial
direction, x, through βr = 2π/Lz and the imaginary part, βi is the spatial amplifica-
tion/damping rate.

In order to solve numerically the quadratic EVP, it must be previously reduced to
a linear EVP. The latter problem can be converted into a (larger by a factor equal to
the degree of non-linearity) linear EVP, as shown by [15], using the companion matrix
method [1], in which an auxiliary vector q̂∗ = [ρ̂, û, v̂, ŵ, T̂ , βû, βv̂, βŵ, βT̂ ]T is defined,
resulting in

ASq̂
∗ = βBSq̂

∗. (3.12)
Matrices AS and BS defined in (3.12) and (3.11) are different.

4. Spatial analysis of flat-plate boundary-layer
The spatial stability analysis of a hypersonic flat-plate boundary-layer at Mach 10 is

studied for verification purposes. This problem was selected by [8] to show the effects
of considering real gas effects, assuming chemical equilibrium, in stability analysis. The
objective is to validate the real gas calculation and the self-similarity solution that are
used in the following section. The Mach 10 boundary-layer calculation is performed using
either a self-similar boundary-layer code or the TAU software for the perfect gas and real
gas cases, respectively. In both cases adiabatic wall condition is set. The boundary-layer
edge temperature is T ∗r = 350 K and the unit Reynolds number is Re′ = 6.6 × 106 1/m.
TheRe′ affects the real gas properties through the reference pressure, which is implicitly
calculated knowing T ∗r , M and Re′.

Boundary-layers profiles as function of the wall normal direction for perfect and real
gas used for stability analysis are compared with those used by [8] in figure 4 at x? ≈
0.606 (or R = 2000). Figure 4 shows the streamwise velocity and temperature for both
perfect and real flow approaches where the lengths are dimensionlalized by using lr
defined previously. δ? (boundary-layer thickness) is about 40 times lr. In both cases
there is a good agreement with Malik’s results [8]. As it can be seen, there is a decrease
in temperature of about 45% under the consideration of chemical reactions. Related with
this, for boundary-layer flow over a flat plate wall temperature increases when the free-
stream Mach number increases too. The following approximate equation relates these
two parameters,

T ?ad/T
?
r = 1 +

γ − 1

2

√
PrM2

r .
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FIGURE 4. (a) Streamwise velocity, (b) Temperature
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FIGURE 5. Spatial local stability results of two-dimensional waves (β = 0). (a) Phase speed and
(b) growth rate.

This relation assumes that the temperature profile across the boundary layer is only a
function of the streamwise velocity. This is valid when the Prandtl number is one but it is
a good approximation in other cases (see [10]).

Stability results obtained by using the base flows shown in Figure 4 are compared in
Figure 5 for two-dimensional waves, i.e. second and third Mack modes [6]. As can be
seen the growth rate and phase velocity of the second and third modes are recovered
in reasonable agreement with results of Malik & Anderson [8]. The small differences
found in the real case are thought to be due to the base flow used here, which has
been computed using the full Navier-Stokes solution of a complete flat plate including
the leading edge and shock wave, instead of the self-similar solution used in Ref. [8].
In this case x is the homogeneous direction and then α is the wavenumber considered
in the ansatz. For the boundary layer on a flat plate, ω can be expressed as FR where
R =

√
U?r x

?/ν?r is the Reynolds number, F = ων?r /(U
?
r )2 is the frequency parameter

and ω is the frequency of the spatial perturbation. In Figure 5 the first of the higher
modes, which was labeled as the second mode by Mack, has been found to be the
dominant unstable mode for a zero-pressure-gradient boundary layer over a flat plate at
high Mach numbers. This study also shows that the third mode, which did not appear in
the perfect gas analysis, is marginally unstable too.
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FIGURE 6. Base flow at M = 10, Re = 2000, Tr = 350 K, Lr = R/Re′ = 3× 10−4 m and h = δ?

obtained by using the approximation of perfect gas. (left) Streamwise velocity (center) wall-normal
velocity (right) and density.

FIGURE 7. Base flow at M = 10, R = 2000, Tr = 350 K, Lr = R/Re′ = 3 × 10−4 m and h = δ?

obtained by using the approximation of real gas. (left) Streamwise velocity (center) wall-normal
velocity (right) and density.

5. Temporal analysis of backstep boundary-layer
Temporal linear instability over the backstep boundary layer flow is considered in this

section. In these simulations the self-similar boundary-layer solution obtained in the
previous section (see Figure 4) is prescribed at the inflow. Boundary conditions at the
wall are no-slip, non-catalytic, and adiabatic, while non-reflecting boundary conditions
are used at the far-field and outflow boundaries.

Figures 6 and 7 show the streamwise velocity, wall normal velocity and density of
the base flow for perfect and real gas approaches, respectively. Figure 8 shows the
recirculation bubble in both configurations. In the latter case the recirculation level is
lower than in the former. This aspect is not crucial when analyzing convective 2D and
3D modal instabilities, which may be present even at zero-recirculation, but it should be
taken into consideration when analyzing global 3D instabilities of the entire recirculation
zone, for which a recirculation level of≈ 10% is known to be necessary in incompressible
flow [12, 17]; analogous studies in hypersonic separated flow have to-date not been
performed.

A convergence study of the base flow in the recirculation region is shown in Figure
9. The first figure shows the streamwise velocity as function of the wall normal direction
obtained at different resolutions in the recirculation bubble. The other figure shows the
temperature as function of the wall normal direction. In both cases there is a good
agreement between the data obtained at different resolutions. Finally as can be seen
in Figure 10 chemical equilibrium destabilizes the dominant leading mode which is a
global mode defined in the recirculation bubble.
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FIGURE 9. Convergence of the base flow inside the recirculation bubble (h = 1/2δ?) and dimen-
sional x position of 0.3. Streamwise velocity and temperature as a function of the wall-normal
distance.

A convergence study of the leading eigenmodes was also performed in order to en-
sure the good resolution of this mode. The module of the amplitude functions for the
velocity and temperature are shown in Figure 11 and 12 for perfect and real gas, re-
spectively. The modulus of the streamwise and wall-normal velocity components and
temperature of the leading mode using both approaches, i.e., perfect and real gas, are
qualitatively similar with a small deformation due to the base flow modification. This
identification allows to identify both modes as the same modal instability.
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FIGURE 11. Amplitude of leading mode at M = 10, Re = 2000, Tr = 350 K,
Lr = R/Re1 = 3 × 10−4 m, h = δ? and β = 2π/δ? = 0.1571 obtained by using the approx-
imation of perfect gas. Module of the (left) streamwise amplitude velocity (center) wall-normal
amplitude velocity (right) and amplitude temperature.
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FIGURE 12. Amplitude of leading mode at M = 10, Re = 2000, Tr = 350 K,
Lr = R/Re1 = 3 × 10−4 m, h = δ? and β = 2π/δ? = 0.1571 obtained by using the approxima-
tion of real gas. Module of the (left) streamwise amplitude velocity (center) wall-normal amplitude
velocity (right) and amplitude temperature.
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