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In Large-Eddy Simulation (LES) it’s crucial to construct a proper SGS model to re-
produce the interactions between the resolved and subgrid scales including energy
backscatter. In order to correctly model the energy transfer between resolved and sub-
grid scales, a fine scale reconstruction subgrid model (FSRM) is proposed based on
a second generation wavelet method. The model is based on a hard deconvolution in
physical space and a subgrid-scale reconstruction in scale space. The deconvolution
is realized by an approximate local deconvolution method (ALDM). The reconstruction
is built on the lifting scheme under the assumption of scale similarity. The velocity de-
composition and reconstruction method is described and validated on the one, two and
three dimensional velocity field in detail. This method can be used to decompose or
reconstruct scale by scale in a series of frequency bands. One of the FSRM model is
presented and validated on decaying grid turbulence, decaying homogeneous turbu-
lence at Re → ∞ and the transition of Taylor-Green vortex. The results show that the
present model can well predict the energy spectra and laminar to turbulent transition,
and can improve energy spectra near the grid cut-off wavenumber compared with ALDM
model.

1. Introduction
In Large-Eddy Simulation (LES), large-scale structures are directly resolved from the

filtered Navier-Stokes equation, while the effects of filtered small-scale structures on
resolved scales are modeled by a subgrid-scale (SGS) model. Therefore, it’s crucial to
construct a proper SGS model to reproduce the interactions between the resolved and
subgrid scales.

Most SGS models are based on the classical homogeneous turbulence theory, which
cannot correctly simulate energy transfer, e.g., energy backscatter. In the classical turbu-
lence theory, it is supposed that small scales function as dissipation scales. These dissi-
pation scales are dynamically universal and are independent of large energy-production
scales. It is also supposed that there are a large range of inertial scales separate
the large and small scales. These assumptions are invalid in wall-bounded turbulence,
where the small scales approaching Kolmogorov length scale are found dynamically
very important. Most of the turbulent kinetic energy is produced by small scales in the
buffer layer at moderate Reynolds number and by large scales in the logarithmic layer
at high Reynolds number [1], which is much larger than local dissipation. As a result,
energy fluxes occur in physical and energy backscatter happens in scale space. In order
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to simulate the dynamics of the small scale near the wall, the grid should be fine enough
to represent the fine scales, which leads to huge computational resources requirements
at high Reynolds number and makes LES restricted in moderate Reynolds turbulence
simulation [2,3].

The complex behavior of wall turbulent flows in the compound space of scales and
wall-normal distances as a function of the filter lengths bas been analyzed by means
of the filtered generalized Kolmogorov equation for filtered velocity fields of turbulent
channel flow [4]. When the filter lengths are very small in streamwise and spanwise
directions, the small scale energy source is captured by the filtered computed fields.
Hence, the role of the sub-grid scales is to drain resolved energy, without nonlinear
energy redistribution effects, and the related phenomenology can be reproduced to a
good degree with the commonly used linear eddy viscosity models. When filtering at
larger scales, the resolved motion does not capture the main mechanisms of the flow
which lie in the small scales. Those subgrid scales are in fact responsible for driving
the larger coherent motion through a backward energy transfer, and contribute to a
significant nonlinear redistribution of resolved energy. Therefore, it is highly required to
construct a SGS model that can reproduce this energy backscatter from the subgrid
scales to resolved scales when filtering at larger scales at high Reynolds number.

The inherent mechanism of multiscale energy transfer of wall-bounded turbulence
requires that the SGS models can predict energy backscatter. In previous investiga-
tions, energy backscatter is introduced into LES by stochastic modeling [5], dynamic
Smagorinsky model [6], similarity subgrid-scale model and velocity estimate models [7].
Stochastic modeling has been applied to solve geophysical flows [8], however, this
method is based on a conditional averaging technique which cannot correctly simu-
late the nonlinear interactions between the resolved and subgrid scales. The dynamic
Smagorinsky models allows negative viscous coefficients, however, in real application
the viscous coefficient should be positive by using the whole or local averaging, other-
wise, the simulation would diverge due to the local energy accumulation. The similarity
subgrid-scale model uses the similarity hypothesis between the resolved and subgrid
scales, which can simulate energy backscatter but has no enough dissipation. There-
fore, it is usually combined with an eddy viscosity model. The velocity estimate model es-
timates the subgrid velocity, which can theoretically model energy scatter and backscat-
ter. Using established properties of nonlinear subgrid-scale interactions, Domaradzki
derived deterministic backscatter models for large-eddy simulations [9]. In 2012, An-
derson and Domaradzki [10] built new backscatter SGS models using energy transfer
between different scales on the basis of the scale similarity. The results is better than
dynamic Smagorinsky model when compared with the DNS data. However, the model
is very sensitive to explicit filter operator.

Subgrid scale reconstruction is based on the nonlinear interactions between large
and small scales to approximate the unfiltered velocity. Therefore, the subgrid stresses
tensor can be directly obtained. The crucial issue of this method is to approximate the
complex nonlinear interaction between the large and small scales, which can be real-
ized by subgrid scale estimation based on the nonlinear terms and by mathematical
deconvolution. Domaradzki established a velocity estimate model [11]. Scotti and Men-
eveau [12] developed a velocity reconstruction method based on fractal interpolation.
Stolz and Adams proposed an Approximate Deconvolution Method (ADM) [13]. The
majority of reconstruction models approximate the unfiltered velocity in physical space.
The interaction of subgrid scales on resolved scales is controlled by extra dissipative
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term [13] and numerical truncation error [14, 15], which falls to make full use of the
nonlinear interaction between subgrid and resolved scales.

The objective of present work is to build a SGS model that can well approximate the
interactions between the resolved and subgrid scales. It is expected that this model
can mitigate the resolution requirement in wall-bounded turbulence simulation at high
Reynolds number. The model is based on an approximate deconvolution in physical
space and a subgrid-scale reconstruction in scale space. The deconvolution is realized
by the ALDM method [15]. The reconstruction is built on the second generation wavelet
method under an assumption of scale similarity. The SGS model is firstly constructed
and validated for isotropic turbulence and then is extended to wall-bounded turbulent
channel flow simulation.

2. Subgrid Scale Modeling
SGS modeling is based on the separation of a flow variable φ(x, t) into a large-scale

resolved part φ(x, t) and a small-scale residual part φ
′
(x, t) by a spatial convolution filter

G(x),

φ(x, t) = φ(x, t) + φ
′
(x, t), (2.1)

φ(x, t) =

∫ +∞

−∞
φ(ξ, t)G(x− ξ)d3ξ. (2.2)

To obtain the governing equations of the resolved flow quantities, a commutative filter is
applied to the Navier-Stokes equations. The following filtered equations can be obtained

∂u

∂t
+∇ · (uu) = −1

ρ
∇p+ ν∇2u, (2.3a)

∇ · u = 0. (2.3b)

The non-linear term uu in the momentum equations is not expressed as a function of
the resolved velocity u, which makes these equations unclosed.

2.1. Fine Scale Reconstruction Model
In the present method, the filtering operation is not performed explicitly, but by using a
finite-volume discretization as a top-hat filter on the background staggered Cartesian
mesh. The filter can be written as

G(xi,j,k,x) =
1

∆xi∆yj∆zk

{
1, if (xi,j,k + x) ∈ Ii,j,k,
0, otherwise,

(2.4)

where a computational cell is

Ii,j,k = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]× [zk− 1

2
, zk+ 1

2
], (2.5)

and ∆xi, ∆yj and ∆zk are the widths of the cell in three coordinate directions. This filter
returns a cell average of a function

ϕ(xi,j,k, t) =
1

∆xi∆yj∆zk

y

Ii,j,k

ϕ(xi,j,k − x, t)dx. (2.6)

When this filter is applied to the Navier-Stokes equations, the governing equations of
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the resolved velocity are obtained as

∂ui,j,k
∂t

+ G(xi,j,k,x) ∗ (∇ · F(u))− ν∇2(ui,j,k) +∇pi,j,k = 0, (2.7a)

∇ · ui,j,k = 0, (2.7b)

where F(u) = uu is the convective flux. Since the unfiltered velocity u is unknown, these
equations are not closed. A solution adaptive deconvolution scheme G̃−1 is designed
to approximate G−1, which results in the approximately deconvolved velocity ũN =
G̃−1 ∗ uN. Then ũN is decomposed into a low frequency residual ũNs−n and a series
of higher frequency details (ũNd−j

, j = 1 · · ·n) by using a second generation wavelet
method based on lifting scheme

ũN = ũNs−n + ũNd−j
, j = 1 · · ·n, (2.8)

where ũNs−n can preserve the mean of the ũN, and ũNd−j
have zero means.

A series of (k + 1) subgrid velocity details (ũp
Nd−j

, j = −k · · · 0) can be predicted by
the details (ũNd−j

, j = 1 · · ·n) at larger scales under the scale similarity assumption.
The whole reconstructed velocity can be obtained as

ũ∗N = ũN + ũp
Nd−j

, j = −k · · · 0, (2.9)

which hopefully can account for the energy transfer between resolved and the unre-
solved scales. Finally, the reconstructed velocity can be used directly in convective flux
computation. A modified Lax-Fridriches flux function F̂N is adopted to approximate the
physical flux function F.

The discretized equations finally can be written as

∂ui,j,k
∂t

+
1

Vi,j,k

∑
∂Ii,j,k

F̂N(ũ∗N) · n∆S − ν∇2(ui,j,k) +∇pi,j,k = 0, (2.10a)

∇ · ui,j,k = 0. (2.10b)

As the whole velocity field is approximated, no explicit subgrid model is applied. An
adaptive local deconvolution method (ALDM) based on a nonlinear deconvolution oper-
ator is adopted to obtain the approximately deconvolved velocity ũN [15]. A projection
method is used to solve the filtered Navier-Stokes equations. A second-order central
scheme is used to discretize the diffusive terms. An explicit third order TVD Rulnge-Kutta
method is used for time advancement. The pressure Poisson equation can be solved ev-
ery sub-step of the Runge-Kutta scheme. In the next section, a velocity decomposition
and reconstruction method based on a second generate wavelet is detailed.

2.2. Decomposition and Reconstruction Based on a Second Generation Wavelet
Turbulent flow consists of self-similar structures with a wide range of length scales.
Multiscale decomposition has gained increasing interest in turbulence for analysis, and
has proven to be useful for understanding the evolution of eddies and the interaction
between turbulent flow structures at different scales.

The classical Fourier spectrum gives the energy distribution of a signal in the fre-
quency domain and is evaluated over the entire time interval, which losses the localiza-
tion of transient features and spatial information [16] and is limited to periodic boundary
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problem. Huang et. al [17] proposed an Empirical Mode Decomposition (EMD) method,
and introduced a concept of Hilbert spectrum. However, EMD cannot correctly represent
the instantaneous frequency of an intrinsic mode function. And the Hilbert spectrum
has no direct physical meaning. Meneveau [18] used continuous wavelets transforma-
tion to analyse turbulence and turbulent kinetic energy. In recent years, curvelets have
found increasing use for scale decomposition investigation [19]. Classical construction
of orthogonal or biorthogonal wavelets on the infinite real line is based on the Fourier
transform (FT) and is carried out in the frequency domain. This introduces considerable
constraints on the implementation of the wavelets for practical flow analysis.

The second generation wavelets constructed by using lifting scheme [20] does not
resort to the FT, and hence, the so-derived basis functions are not necessarily transla-
tions and dilations of a mother function, which makes it suitable for problems defined in
bounded domains, analysis of data on curves or surfaces, weighted approximations, and
irregular grids. Additional important benefits are the fast implementation, which is fully
in-place calculation, and perfect reconstruction. Therefore, in this investigation, it is used
to achieve a hierarchical decomposition of the turbulent velocity field in the scale space.
Under the scale similarity assumption, a fine scale reconstruction model is proposed.

2.2.1. Scale Decomposition

The lifting scheme is independent of the Fourier transformation and has three steps:
split, predict, and update. An original signal λ0,k (k is the length of the data and can be
even or odd.) can be split into two subsets:

(λ0,2k, λ0,2k+1) = split(λ0,k), (2.11)

and let λ−1,k = λ0,2k. The wavelet coefficients γ−1,k are obtained in the prediction step
as:

γ−1,k = λ0,2k+1 − P (λ0,2k), (2.12)

where P is a prediction operator. Finally, scaling coefficients λ−1,k are obtained in the
update step as:

λ−1,k = λ−1,k + U(γ−1,k), (2.13)

where U is an update operator. Then repeat this process to get wavelet and scaling
coefficients at large spatial scales. If n levels of scale are decomposed and denote the
forward second generation wavelets transformation as ’SWT’, then the n times forward
transformation can be represented as:

(λ−n,k, γ−j,k) = SWTn(λ0,k), (j = 1 · · ·n, k ∈ Z). (2.14)

The scale decomposition is realized by a layered inverse transformation. The low fre-
quency residual s−n having the same signal length in physical space is calculated from
the inverse transformation of the scaling coefficients λ−n,k:

s−n = SWT−n(λ−n,k). (2.15)

And a high frequency detail d−j at level j is obtained by the inverse transformation of
the corresponding wavelets coefficients γ−j,k:

d−j = SWT−j(γ−j,k), j = 1 · · ·n. (2.16)
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Finally the original signal can be perfectly reconstructed as:

λ0,k = s−n +

n∑
j=1

d−j = SWT−n(λ−n,k, γ−j,k), j = 1 · · ·n. (2.17)

2.2.2. Fine Scale Reconstruction
Based on the view of energy cascade and scale similarity hypothesis of homogeneous

turbulence, finer wavelet coefficients λ−j,k at level j can be expected as a function of
scaling and wavelet coefficients at all the coarse levels as:

γ−j,k = f(λ−n,k, γ−j−1,k, · · · , γ−n,k), (2.18)

where f is an unknown function. In the consideration of localization of fine scales, it is
supposed that the predicted wavelet coefficients γp−j,k by a model are linear function of
its neighbour coarse-level coefficients γ−j−1,k and γ−j−2,k. Therefore, a wavelet coeffi-
cient at position xl can be predicted by using its two neighbours γ−j−1,xm and γ−j−1,xn

as:

γp−j,xl =
xn − xl
xn − xm

∗ γ−j−1,xm +
xl − xm
xn − xm

∗ γ−j−1,xn , (2.19)

where it supposes xm < xl < xn. Then the predicted high frequency detail dp−j can be
obtained by the inverse transformation of γp−j,k as:

dp−j = SWT−j(γp−j,k), j = 1 · · ·n. (2.20)

Using this model, a higher frequency detail γp0,2k can be predicted and reconstructed
from two highest frequency details γp−1,k and γp−2,k. Therefore, a finer velocity signal
λp1,2k using γp0,kand λ0,k can be built. As λp1,2k is two times of length of λ0,k, hence,
the length of λ0,k,γ−1,k and γp−2,k should be doubled. Then the finest details γp0,2k is
predicted as:

γp0,2k = f(γ−1,k, γ−2,k) (2.21)
Finally, the finer velocity signal can be obtained as:

λp1,2k = SWT−1(γp0,2k, λ
p
0,2k). (2.22)

The procedure of scale decomposition and reconstruction is shown in Fig. 1. The
required input to the program is an original signal. All the high frequency detail d−j ,
low frequency residual s−n, predicted high frequency detail dp−j and the finer velocity
signal can be obtained at one time transformation. Multidimensional transformation can
be realized by tensor product of the transform in each direction.

3. Validation of Velocity Decomposition and Reconstruction Methods
The velocity decomposition and reconstruction methods introduced in section 2.2 are

validated for one, two and three dimensional turbulent velocity fields.

3.1. Homogeneous turbulence
An original data is obtained from the measurements of isotropic grid turbulence at Taylor
Reynolds number Reλ = 720 [21]. The velocity signal is decomposed into n=9 levels,
that is, a series of high frequency details d−j(j = 1 · · · 9) and a low frequency resid-
ual s−9, as shown in Fig. 2. Each high frequency detail represents a series of velocity
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FIGURE 1. Procedure of scale decomposition and reconstruction method.
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FIGURE 2. Scale velocities obtained at n = 9 for homogeneous turbulent velocity at Reλ = 720.

at certain scale, which is named scale velocity. The low frequency residual represents
the largest scale velocity, which represents the trend of the original signal as shown in
Fig. 3. To know the kinetic energy characteristics, FT is done for each scale velocity and
original velocity, as shown in Fig. 4. It can be found that each scale-velocity component
contributes to the total spectra at its corresponding frequency range. As the scale be-
comes smaller, the corresponding frequencies become larger and the energy spectra
become smaller.

To approach the −5/3 Kolmogorov spectrum, one by one Fourier spectrum of d−j(j =
1 · · · 9) has been adding together to reach low frequency in the inertial range as shown
in Fig. 5. It can be seen that the velocity signal is decomposed into three terms: the
small scales corresponding to a dissipation range, the large scales corresponding to
the energy carrying structures and the moderate scales corresponding to a inertial sub-
range.

3.2. Zero-pressure-gradient Boundary Layer
An original data of a zero-pressure-gradient boundary layer is obtained from the instan-
taneous velocity fields in a streamwise-wall-normal plane at Reynolds number Reθ =
7705 ( [22]). It contains the streamwise velocity component (u) and the normal turbulent
velocity component (v). The fluctuation velocity signals u and v (mean-velocity sub-
tracted) are decomposed into 5 levels. Each scale-velocity component of u and v are
combined with coordinate, then correspond vorticity can be calculated from the scale-
velocity field. The vorticity contour of scale-velocity is shown in Figure 6. It can be clearly
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FIGURE 3. Comparison of orig-
inal velocity and the largest
scale velocity component s−9.
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FIGURE 4. Fourier spectrum of
d−j (j = 1 · · · 9). The refer-
ence line has slop −5/3.
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FIGURE 5. Fourier spectrum of
the sum of d−j from d−1 to d−9,
s−9. It shows a clear asymp-
totic behavior.

FIGURE 6. Vorticity contour of scale-velocity component.

seen that the the vorticity of scale velocity show a gradual increasing trend from scale
velocities d−1 to d−5, and the scale of vortex also increases. s−5 is the largest scale-
velocity, and it contains the largest scale eddy.

The vorticities of scale velocity have been added together and is compared with that
the original data as shown in Fig. 7. The difference between them is very small. It can be
clearly seen that they are exactly the same and the value of difference is too small, so
that it can be ignored. It shows that the vorticity contour also can be reconstituted. The
fluctuation velocity signals are decomposed into several scale-velocity corresponding to
the vortex has be separated into a set of smaller scale vortex and a bigger scale vortex.
Also, the corresponding vorticity can been decomposed.

3.3. Turbulent Channel Flow
Nine series of velocity are obtained at nine different wall distances in a DNS of a TCF
at Reτ = 206. The fluctuation velocity signals (mean velocity subtracted) are decom-
posed into 11 levels. To know the relationship between the largest scale velocities s−11

at different wall distances, they are compared in Fig. 8. It can be clearly seen that
they have similarity in the buffer and logarithmic regions and that there are time delays
from bottom to centre. The correlation coefficients of s−11 and original velocity signals
at y+ = 97.96 to those at other wall distances are shown in Fig. 9. It is obvious that the
correlation coefficients of s−11 are much larger than the correlation coefficients of orig-
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vorticity: -2.5292 -0.3757 -0.0912 -0.0001 0.0388 0.1226 0.2601 3.1517 6.9389

sum (vorticity of d -j,vorticity of s -n)

vortic

FIGURE 7. Comparison of vorticity for original velocity and summation of scale velocity.

FIGURE 8. Comparison of s−11 at different wall
distances, each one is shifted 0.2 upwards
from y+ = 4.12 for clarity.

FIGURE 9. Correlation coefficients of s−11 and
original velocity signals between at y+ = 48.98
and at other y+.

inal velocity signals. In the consideration of all these large scale velocities are related
to a large coherent structure across the half channel, the max correlation coefficients
are also computed and presented. All the correlation coefficients increase, except for
that at y+ = 97.96 as shown in Fig. 9. The analysis above is consistent with the experi-
mental results of Mathis et al. [23] at high Reynolds number that the large scales in the
logarithmic region have modulation effect on the near wall motion.

Four series of instantaneous streamwise velocity in xz plane are obtained at four
different wall distances. The velocity signal is decomposed into n = 5 levels. From the
contour of scale-velocity as shown in Fig. 10, Fig. 11 and Fig. 12, the streak of high
and low velocity can be clearly seen. In buffer layer, the streak of high and low velocity
has appear in smaller scale velocity like d−3, but the velocity in logarithmic region does
not has clear steak. In logarithmic region, the scale velocity d−4 begin to appear steak
but not clearly, and the scale velocity s−5 has show the clear steak.It can be clearly seen
that the contour of smaller scale velocity like d−3 is similar in the same region but less
similar in the different layer. But he contour of larger scale velocity like s−5 is similar not
only between in same region but also in different layer.
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FIGURE 10. Velocity contours
of d−3 at different wall dis-
tances.

FIGURE 11. Velocity contours
of d−4 at different wall dis-
tances.

FIGURE 12. Velocity contours
of s−5 at different wall dis-
tances.
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FIGURE 13. Comparisons of
Fourier spectrum of recon-
structed and original scale ve-
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FIGURE 14. Comparison of
Fourier spectrum for λp1(blue)
and λ0(red).

FIGURE 15. Comparison of
λp1(blue) and λ0 (yellow).

3.4. High Frequency Detail Prediction
For homogeneous turbulence the finer details can be predicted from its neighbour coarse
levels. The details at levels −1, −4 and −6 are reconstructed and their power spectra
are compared with the original decomposed scale velocities, as shown in Fig. 13. There
are small discrepancies between the predicted and original ones, especially at energy
containing frequency.

The original signal can also be extended to finer one using the model in section 2.2.2
without data contamination as shown in Fig. 14 and Fig. 15.

3.5. Three Dimensional Flow Field Decomposition and Final Scale Prediction
A three dimensional velocity filed of an arbitrary isotropic homogeneous turbulence pro-
duced by LES with resolution 48×48×48 in a computational domain of 2π×2π×2π cube
is used as the original velocity filed. Three levels n = 3 of decomposition and two levels
n = 2 of finer scale prediction are applied. The original velocity can be decomposed
into the large scale residual s−3 and small scale details d−j(j = 1, 2, 3), as shown in
Fig. 16. To validate the accuracy of perfect reconstruction, the decomposed scale veloc-
ities are added together and compared with the original velocity, as shown in Fig. 17. It
is obvious that the difference between original and reconstructed velocity is trivial. The
final scale velocities are predicted at the resolutions 963 and 1923, as shown in Fig. 18.
The large scale structures are preserved, and the final scales are predicted from their
coarser neighbor details.

From above detailed validations of the velocity decomposition and reconstruction
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FIGURE 16. Decomposition of 3D velocity with level n = 3.Large scale residual s−3 and details
d−j(j = 1, 2, 3).

FIGURE 17. Comparison of the 3D original and fully reconstructed velocity.

FIGURE 18. Two level finer scale velocity prediction.

method, it can be concluded that it functions correctly for one, two and three dimen-
sional decomposition, reconstruction and prediction, and can be used in the subgrid
modeling.

4. A Posteriori Analysis of Fine Scale Reconstruction Model
In LES filtering operator is often nothing but formalism in writing the continuous form

of the filtered Navier-Stokes equations. In practice filtering is assumed to be realized
by the projective grid filtering, interpolation, discretization and integration schemes. Dis-
cretization of a computational domain introduced a characteristic grid length scale. For
uniform resolution h, this scale is set by the Nyquist cut-off frequency π/h. If the res-
olution is nonuniform, the characteristic length cannot easily be ubiquitously defined. It
is found that the effective filter length severely depends on the numerical scheme [24].
In the formulation of LES it is assumed that the scales smaller than the Nyquist cut-off
associated grid length are completely filtered out. However, in practice there are still lots
of small scales between the grid cut-off length and the minimum scales that the gird can
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FIGURE 19. Energy spectra of homogeneous
turbulence produced with ALDM LES on the res-
olution 483. kcut−off is the wavenumber set by
the Nyquist cut-off frequency. kgrid is the maxi-
mum wavenumber that the grid can support.

FIGURE 20. Comparisons of energy spectra for
the experimental results of Comte-Bellot and
Corrsin, LES results of ALDM and FSRM.

support, as shown in Fig. 19. These small scales are partially resolved and are crucial
for the energy transfer between the resolved and subgrid scales. It can be seen that the
resolved energy spectra at the low wavenumbers near the cut-off wavenumber is under-
predicted and has large slope approaching the characteristics of dissipation scales.

In the Fine Scale Reconstruction Model (FSRM) the small scales between the cut-
off wavenumber and the maximum grid-supported wavenumber can be manipulated by
using the decomposition and reconstruction method. In the investigation these small
scales can be isolated, scaled, filtered, reconstructed from its coarser neighbours. A
model based the incoherent scales filtering and the fine scale reconstruction can be
written as

d∗−1 =

{
noise, |d−1| < Cf |d−1|mean
d−1, |d−1| ≥ Cf |d−1|mean

}
+ Cpd

p
−1, (4.1)

in which the modeling coefficients are Cf = 1.5, Cp = 0.3. dp−1 is predicted from d−2

and d−3. In this section only this model is presented on the simulation of decaying grid
turbulence, decaying homogenous turbulence at infinity Reynolds number and transition
Taylor-Green vortex flow.

4.1. Decaying Grid-Generated Turbulence
The computations are initialized with energy spectrum and the Reynolds number is
adapted to the wind-tunnel experiments of Comte-Bellot and Corrsin [25]. The flow is
modeled as decaying turbulence in a 2π3-periodic computational box. The energy dis-
tribution of the initial velocity field is matched to the first measured energy spectrum.
The SGS model is validated by comparing computational and experimental 3D energy
spectra at later time instants which correspond to the other two measuring stations, as
shown in Fig. 20. It can be seen that with the same initial energy spectrum, the FSRM
model can obviously improve the energy spectra near the cut-off frequency compared
with the results of ALDM model.
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(a) Energy spectra of
FRSM model

(b) Energy spectra of
ALDM model

(c) Energy spectra of
dynamic Smagorinsky
model

(d) Energy spectra of
WALE model

FIGURE 21. Comparisons of energy spectra for different SGS models in decaying homogeneous
turbulence simulation at Re→∞.

4.2. Decaying Homogeneous Turbulence at Re→∞
The computations are initialized in spectra space with white noise having energy spec-
trum k−5/3. The computational domain is a 2π3-periodic computational box with res-
olution 483. After an initial transition the energy spectrum decays self-similarly, which
can preserves the k−5/3 law, as shown in Fig. 21(a). The results of ALDM, dynamic
Smagorinsky model and WALE model are also shown in Fig. 21. The ALDM model
exhibits weak over-dissipation near the cut-off frequency assembling the results of de-
caying grid turbulence in the last section. The dynamic Smagorinsky model is too dissi-
pative near the cut-off frequency and cannot preserve the k−5/3 scaling law, while WALE
model just has slight over-dissipation near cut-off frequency.

4.3. Transition of the Taylor-Green vortex
Laminar-turbulent transition is one of the most challenging test case for SGS modeling.
The instability modes should be modeled well to predict the onset of transition, neither
be stabilized by over-dissipation, nor be early transitioned by under-predicted dissipa-
tion. The computational domain is a 2π3-periodic box with resolution 643. The initializa-
tion is taken as in the DNS of Brachet et al. [26] at Reynolds number 3000. The energy
dissipation rates of FSRM and ALDM are compared in Fig. 22(a). Before time t = 4 as
there is no small scales developed, the dissipation rate of FSRM is identical as ALDM.
Then as there are small scales developed in the wavenumber range from kcut−off to
kgrid, the FSRM model has large dissipation rate than ALDM. The energy spectra of
both models are compared in Fig. 22(b) and Fig. 22(c). FSRM model produces energy
spectra having k−5/3 scaling law at time t = 12, while the results of ALDM also exhibits
over dissipation near cut-off frequency at the same simulation time.

5. Conclusions
In order to correctly model the energy transfer between resolved and subgrid scales

in large-eddy simulation, a fine scale reconstruction subgrid model (FSRM) is proposed
based on a second generation wavelet method. The model is based on an approximate
deconvolution in physical space and a subgrid-scale reconstruction in scale space. The
deconvolution is realized by the approximate local deconvolution method (ALDM). The
reconstruction is built on the lifting scheme under the assumption of scale similarity.
First, the resolved velocity is approximately deconvoluted to get approximate velocity.
Then approximated deconvolved velocity is decomposed into a hierarchic of scale ve-
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(a) Dissipation rate of FSRM
and ALDM

(b) Energy spectra of FRSM
model

(c) Energy spectra of ALDM
model

FIGURE 22. Comparisons of dissipation rate and energy spectra for Taylor-Green vortex
transition at Re = 3000.

locities. The subgrid velocity field is reconstructed by the details of its near bands details.
Finally, the whole reconstructed velocity can be used directly in convective flux compu-
tation. Therefore, there is no explicit SGS modeling term required.

The velocity decomposition and reconstruction method is described and validated
on the one, two and three dimensional velocity field in detail. The results show that the
method can be used to decompose or reconstruct scale by scale in a series of frequency
bands.

One of the FSRM model is presented and validated on decaying grid turbulence,
decaying homogeneous turbulence at infinity Reynolds number and the transition of
three-dimensional Taylor-Green vortex. The results show that present model can well
predict the energy spectra and laminar to turbulent transition, and can improve energy
spectra near the grid cut-off wavenumber compared with ALDM model. This model will
be investigated further on wall-bounded turbulence.
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