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Comparative Analysis of CFD and PIV Base
Buffeting Data Considering Decomposition

Techniques and Filtering Effects in the
Measurement Chain

By T. Horchler, P. Blinde†, C. Serhan‡, K. Hannemann¶ AND F. Schrijer†
Deutsches Zentrum für Luft- und Raumfahrt DLR, Spacecraft Department,

Bunsenstr. 10, 37073 Göttingen

Significant dynamical loads on the nozzle structure of launch vehicles during ascent
can cause deformations and eventually complete failure of rocket engines. This effect,
known as base buffeting, has been observed for the Ariane V vehicle and is caused by a
strong flow seperation at the base of the main body and subsequent reattachement on
the nozzle. In order to investigate this phenomenon and to assess mitigation strategies,
wind tunnel experiments and numerical simulations of a subscale wind tunnel model at
transonic flight conditions have been conducted.

This work compares an experimental and numerical dataset of a launch vehicle tail
flow field in terms of Proper Orthogonal Decomposition (POD) and Dynamic Mode De-
composition (DMD). Both methods allow to isolate dominant flow features and, in case
of DMD, to determine an oscillation frequency associated with the mode.

In order to account for the different spatial and temporal resolutions of the datasets,
the numerical simulation data is subsampled and spatially filtered to match the experi-
mental Particle Image Velocimetry (PIV) dataset as closely as possible. This approach
also allows to assess the effect of spatio-temporal filtering on the CFD mode structure.
Additionally, POD and DMD modes of the numerical surface pressure distribution are
compared to high-resolution experimental surface pressure measurements.

1. Introduction
During the ascent of the Ariane 5 launch vehicle significant dynamic loads on the

nozzle can cause deformations which may lead to catastrophic failure of the engine.
This phenomenon is known as base buffeting and is caused by a strong flow separation
at the base of the launcher vehicle. Wind tunnel experiments and CFD investigations
have been conducted to gain more insight into this phenomenon, to improve modeling
and to assess mitigation strategies (see, e.g., [4, 11]). Compared to experiments, CFD
computations typically achieve a much higher spatial and temporal resolution but span
a shorter time period and may not capture all flow features correctly. In experiments on
the other hand, it is easy to achieve long time series but high sampling frequencies are
difficult to realize. Furthermore, the experimental measurement chain introduces spatial
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FIGURE 1. Left: CAD description of the geometry used in the IDDES. Right: picture of the model
used for the PIV experiment mounted in the DNW HST wind tunnel (source [6])

and temporal filtering (modulation) that damps any frequencies above a certain thresh-
old and leaves all flow scales smaller than a certain size unresolved. Given these merits
and drawbacks of both types of investigations, comparing the outcome of experiments
and simulations is essential for the proper interpretation and mutual validation of their
results.

Experimental and CFD results are often only compared in terms of mean and fluc-
tuating surface pressure data and velocity fields. Meanwhile, methods for data decom-
position like proper orthogonal decomposition (POD) [1, 9] and dynamic mode decom-
position (DMD) [10, 15] have shown potential in analyzing experimental and numerical
results. Both methods isolate dominant flow modes which could be used to construct
low-order models of the flow. The methods rely on the availability of suitable input data
only and do not require making any assumptions about the flow. POD [1, 7, 9] is a well
established analysis tool in the fluid dynamics community. Using snapshots with spa-
tially resolved data, it yields spatial modes on an orthogonal basis ranked by energy
content. DMD [10,15] emerged as a new tool only around 2008 and has since been ap-
plied successfully to many academic and industrial problems [3,8,10,12,13,17]. Using
time resolved data sampled at a constant frequency, DMD provides single-frequency
modes ranked by amplitude.

The present work investigates the suitability of using POD and DMD to compare ex-
perimental and numerical results. The study compares two datasets of the flow over the
nozzle of the Ariane 5, one obtained via experiments and one via a simulation. The ex-
perimental data consists of unsteady pressure measurements in conjunction with time-
resolved planar PIV measurements. These results were obtained in the framework of
the ESA TRP ‘Unsteady Subscale Force Measurements Within a Launch Vehicle Base
Buffeting Environment’ [4, 6, 11]. The CFD data was obtained by an improved delayed
detached-eddy simulation (IDDES) using DLR TAU code [16] in the follow-up ESA TRP
‘Launcher Base Flows and Shock Interaction Regions Improved Load Characterization’
.

2. Description of the Experimental and Numerical Datasets
The present study uses a subset of the results from pressure measurements de-

scribed by [4], PIV experiments described by [11] and a revised version of the improved
delayed detached eddy simulation (IDDES) described by [6]. For detailed descriptions
of the experimental and numerical investigations, the reader is referred to those studies.
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(a) PIV setup (b) Locations of the pressure sensors.

FIGURE 2. Experimental setups. Left: PIV setup (adapted from [11]). Right: Location of pressure
sensors (source: [4])

All datasets represent a Mach 0.8 flow over a 1:60 scale model of the Ariane 5
launcher with two booster held without supporting struts near the base (see Fig. 1). This
configuration is referred to as "attaches midi" in [4, 11] and configuration 1 in [6]. The
diameter of the model main body is D=0.0908 m. Experiments were performed in the
DNW High Speed Wind Tunnel with the following freestream conditions which were also
used for the simulation [4, 6]: static freestream pressure p∞ = 65740 Pa, freestream
velocity V∞ = 266.1 ms−1, freestream dynamic pressure q∞ = 29.4 Pa and the unit
Reynolds number Rem = 12.8 106 m−1.

Fig. 2 shows the experimental setup used to obtain the PIV results as well as the
location of the field of view [11]. The size of the field of view was 110 x 100 mm. The
vector pitch is 0.72 mm obtained using a final interrogation window size of 32 x 32
pixels and 75 percent overlap. Image pairs were recorded at a frequency of 2.7 kHz
corresponding to a Strouhal number StD = 0.9. The dataset consists of 2728 snapshots
giving a total sample length of 1010 ms.

Pressure measurements were obtained in a separate experimental campaign using
144 flush mounted cylindrical differential unsteady pressure transducers located in eight
rings distributed over the nozzle [4] (see Fig. 2). Measurements were obtained at a
sampling rate of 12.8 kHz. The dataset consists of 131076 samples for each transducer
resulting in a total sample length of 10.24 s.

The IDDES was performed using the DLR TAU code [16] on an hybrid grid with 23 mil-
lion points (Fig. 3). In the present case, the Spalart-Allmaras (SA) turbulence model was
used in combination with a low-dissipation central differencing scheme. The RANS/LES
switching is based on a characteristic grid length scale which is chosen to be propor-
tional to the largest local cell dimension. The simulation results consist of three ve-
locity components, pressure, density, viscosity, vorticity and the Q-value. The physical
timestep in the original simulation is 2 microseconds.

For the present study the dataset was downsampled to 9631 snapshots with a time
separation of 20 microseconds corresponding to a frequency of 50 kHz and a Strouhal
number of StD = 17.1. The resulting dataset spans a duration of 0.193 s. To further
reduce the data volume, a quasi two-dimensional plane was extracted consisting of
97268 grid points.

Table 1 provides an overview of the PIV and simulation properties used for the present
study.

In order to compare the experimental and the numerical datasets, the 2D CFD data
has been extracted at the same location as the PIV data. Additionally, the CFD sampling
rate has artificially been reduced to match the sampling rate of the PIV experiments. This
dataset will be referred to as the raw CFD dataset in Sec. 4. The CFD has been further
processed to reproduce the PIV reconstruction process. In a first step, the field of view
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Property PIV data Exp. surface pressure CFD data
Sampling frequency (kHz) 2.7 (StD= 0.9) 12.7 (StD = 4.3) 10 (StD = 3.3)
Number of samples 2,728 131,076 1,635
Duration (ms) 1010 10240 163.5
Number of gridpoints 13,984 144 60,080

TABLE 1. Properties of datasets

FIGURE 3. CFD grid setup. Left: 2D slice of the full domain. Right: zoom of nozzle region.

has been reduced to the PIV field of view which excludes the model near wall region
because reflections from the model surface prevent accurate PIV measurements. The
data has also been interpolated from the CFD grid to the coarser PIV grid. In a second
step the velocity field has been averaged over a window size of 2.88 × 2.88 mm giving
a vector pitch of 0.72 mm and an overlap of 75%. This dataset will be referred to as the
filtered CFD data.

3. Data Decomposition Techniques
Typical realistic flows incorporate a wealth of structures with different spatial and tem-

poral scales that interact in complex ways. Flow measurements and simulations aim
to obtain accurate representations of the true flowfield. As these techniques improve
over time, they lead to large amounts of data with increasingly resolved complex flow
features. Isolating the particular flow features of interest for a certain analysis can be a
challenging task that may be assisted by a variety of post-processing techniques. These
include techniques that rely on flow modeling assumption, statistical techniques such as
conditional averaging, and data decomposition such as POD and DMD which are the
topic of the present study. As mentioned in the introduction, both POD and DMD iso-
late dominant flow modes and can be used to construct low-order models of the flow.
In general, there are different ways in which a dataset (and therefore flow field) can be
decomposed. A particular unique decomposition is obtained by imposing restrictions on
the resulting decomposition. POD and DMD differ in the way that they impose these re-
strictions. POD imposes restrictions on the spatial structure of the data to obtain spatial
modes on an orthogonal basis while DMD imposes restrictions on its temporal structure
to achieve single-frequency modes. Due to the nature of the respective decomposition,
POD requires spatially resolved input data and DMD requires time resolved input data.
Another important consequence of the way the decompositions are defined is that the
POD modes are not necessarily coherent in time and the DMD modes are not neces-
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sarily coherent in space. Furthermore, it is noted that neither POD nor DMD make any
assumptions about the flow and that as a consequence, the resulting modes do not nec-
essarily represent physical phenomena. A very useful property of the implementations
of POD and DMD is that the algorithms can be setup to only return the first specified
number of modes, thereby significantly reducing computation time, and the resulting
modes are ranked in terms of energy content (for POD) and mode amplitude (for DMD).
It should however be noted that energy and/or amplitude are not in all cases the most
relevant measures to rank flow structures.

3.1. Proper Orthogonal Decomposition
POD is a well established analysis tool in the fluid dynamics community [1,7,9]. In order
to apply POD, the data is rearranged in a snapshot matrix Ψ0 in which each column
represents the spatial data at one instant of time (the name Ψ0 which is unusual in the
context of POD is chosen here to mirror the description of DMD in the next section).
The POD of the snapshot matrix Ψ0 can be shown to be identical to its single value
decomposition (SVD) (see e.g. [10])

Ψ0 = UΣV ∗ (3.1)

where U is an orthonormal matrix containing the left singular vectors that represent the
POD modes; Σ is a pseudo-diagonal and semi-positive definite matrix with diagonal
entries containing the singular values that represent the amplitudes of the POD modes,
and V is an orthonormal matrix containing the right singular vectors that represent the
time evolution.

3.2. Dynamic Mode Decomposition
Dynamic mode decomposition was originally proposed in [10] and has since been modi-
fied [5,15]. This work uses an extended version [5] of the original algorithm that enforces
a sparse reconstruction of the full flowfield by an optimized choice of modes.

In order to apply DMD to any type of dataset, the data must be sampled at a constant
frequency and is then rearranged in two snapshot matrices

Ψ0 = [ψ0 ψ1 . . . ψN−1] (3.2)
Ψ1 = [ψ1 ψ2 . . . ψN ] (3.3)

where each column {ψ0, . . . , ψN} represents the spatial data at one instant of time. The
method assumes a linear and time-invariant mapping A between the snapshots

Ψ1 = AΨ0 (3.4)

The goal is now to find a low-order representation ofA in terms of the DMD modes of Ψ0.
To do this, the data matrix Ψ0 is first decomposed using singular value decomposition
as a means of preconditioning (note the similarity to POD up until this step)

Ψ0 = UΣV ∗. (3.5)

A DMD representation of A is then given by

FDMD = U∗Ψ1V Σ−1 (3.6)

whose properties are sought in terms of a eigenvalue decomposition. Using the eigen-
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values and eigenvectors, the data is then decomposed in

[ψ0 . . . ψN−1]︸ ︷︷ ︸
Ψ0

≈ [Φ0 . . . ΦN−1]︸ ︷︷ ︸
Φ

α1

. . .
αr


︸ ︷︷ ︸

Dα

1 µ1 . . . µN−1
1

...
...

. . .
...

1 µr . . . µN−1
r


︸ ︷︷ ︸

Vand

(3.7)

where Φi are the DMD modes,Dα is a diagonal matrix containing an amplitude and Vand

contains the temporal evolution. In [5] it is shown that the calculation of the amplitudes
αi can be formulated as an optimization problem

minimize
α

J(α) = ‖ΣV ∗ − Y DαVand‖2 . (3.8)

This algorithm is then extended to enforce a sparse solution by adding a term that
punishes reconstructions based on many modes.

minimize
α

J(α) + γ

r∑
i=1

∣∣αi∣∣ (3.9)

where γ is a user defined number that determines the level of sparsity. The quality of
approximation is described by a performance loss parameter (in percent) defined by

Ploss := 100

√
J(α)

J(0)
= 100

‖Ψ0 − ΦDαVand‖
‖Ψ0‖

. (3.10)

4. Results
4.1. Mean Flow Field

Fig. 4 compares the mean flow fields obtained via PIV (left column) and CFD (middle
column). In addition, the right column shows the impact of spatially filtering the CFD data
to mimic the resolution of PIV as described in Sec. 2. The top row shows the velocity
in x-direction and the bottom row the velocity in z-direction. The PIV data (left column)
does not follow the exact nozzle contour because no reliable velocity measurements
could be obtained close to the wall due to poor seeding and lighting conditions in that
region. The depicted region for the CFD data (middle column) was chosen to correspond
to the overall PIV field of view but with the near wall region included. For the filtered CFD
data (right column) this region was excluded to better resemble the PIV results.

In general terms, the CFD and PIV data yield the same average flow fields. A shear
layer emanates from the edge of the main body. It grows in size in downstream direction
as a result of the typical thickening behavior of mixing layers and the unsteady flapping
behaviour of the shear layer. This flapping could also be observed when comparing dif-
ferent instantaneous snapshots. Below the shear layer exists a low speed region. Within
this region, the simulation data shows a small layer with reversed flow over the surface
of the model (see top middle figure). Small pockets with stronger reversed flow can be
observed directly downstream of small steps and corners in the nozzle geometry. The
average flowfield obtained by PIV (top left figure) shows virtually no reversed flow. It
should however be noted that no measurements are available in a small layer directly
above the surface and where reversed flow is likely to occur. In comparison, also the
filtered CFD results (top right figure) does not show any reversed flow. Further compar-
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(a) PIV (b) CFD (c) Filtered CFD

FIGURE 4. Comparison of the mean velocity fields. Left: PIV data. Centre: raw CFD data. Right:
filtered CFD data. Top row: Streamwise velocity u. Bottom row: Wall normal velocity w.

(a) PIV (b) CFD (c) Filtered CFD

FIGURE 5. Comparison of the rms velocity fluctuations. Left: PIV data. Centre: raw CFD data.
Right: filtered CFD data. Top row: Streamwise velocity u. Bottom row: Wall normal velocity w.

ison of the two flow fields shows subtle differences in the the mean shape and size of
the shear layer and the low-speed region below.

The comparison of the wall-normal (z) velocity component shows a number of dif-
ferences between the experimental and the numerical data. The region with maximum
z-velocity lies closer to the surface and is larger than in the simulation data. Also, a
pocket of higher z-velocity extends further towards the launch vehicle base. No signifi-
cant difference is observed between the filtered and unfiltered CFD data.

4.2. RMS Velocity
Fig. 5 compares the RMS of the velocity fluctuations. The figure shows that whereas the
PIV and CFD data qualitatively lead to the same flow field, there is a large difference in
the strengths of the fluctuations. The CFD data shows considerably stronger fluctuations
(see middle and right column) compared to the PIV data. Even when the CFD data is
filtered in a similar manner as the experimental data, there still remains a difference of
about 4 % of the free-stream velocity compared to the PIV data. These observations
apply to the x- as well as the z-velocity component.



22 T. Horchler, P. Blinde, C. Serhan, K. Hannemann & F. Schrijer

0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16

POD mode

E
n
er
g
y
ca
p
tu
re
d
[%
]

PIV

CFD

CFD �ltered

(a) POD mode energy content.
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(b) Cumulative POD mode energy.

FIGURE 6. Single mode and cumulative relative energy content of the POD modes.

4.3. POD of Velocity Data

In this section, the POD modes of the experimental and numerical datasets are com-
pared. Even though the POD has been applied to both velocity components simultane-
ously, the x velocity will only be reported here for brevity. Generally, all observations are
also valid for the wall normal velocity.

Fig. 6 compares the energy spectrum of the velocity POD modes. Consistent with
the theoretical framework, the modes are ranked in terms of energy content, where
the first mode contains the largest amount of energy. Comparison between the PIV
and CFD modes shows that the first CFD mode contains less relative energy and the
decay towards higher modes is less pronounced. Since these plots represent the relative
energy content per mode, this means that the total energy is more evenly distributed
across the modes for the CFD results. This indicates that there is a larger range of
length scales present in the flow that needs to be represented by larger number of
modes. This also becomes clear when the energy spectrum for the filtered CFD data is
observed, here the relative energy is shifted towards the lower modes which are more
pronounced compared to the raw CFD data.

Fig. 7 shows the first six POD mode shapes of the streamwise velocity fluctuations
ranked by energy content. Generally, the PIV and the filtered CFD mode shapes agree
qualitatively very well for all modes shown even though there are small differences in
position and mode amplitude. The variation in the amplitudes can be directly linked to
the different distributions of energy (compare Fig. 6) and the different total content of
energy, represented by the RMS values in Sec. 4.1.

Since differences in between the absolute POD mode amplitude of PIV and CFD are
caused by a combination of various effects, it is of little interest to compare them directly.

When comparing the raw CFD modes with the PIV and filtered CFD results, one
notices that modes 0,1 and 4 agree quite well in shape and position but modes 2,3 and
5 differ. Especially mode 2 and 3 look fundamentally different than PIV or the filtered
CFD modes. In order to identify if this difference is caused by the PIV field of view or the
filtering process, the raw CFD data has been decomposed into POD modes considering
only the PIV field of view (see Fig. 8). One notices that the overall mode shapes are
identical and that therefore the chosen field of view has a large impact on the POD mode
structure. Since the overall field of view is similar for the raw CFD and the PIV data, the
difference is likely to be caused by the near wall region which is not considered for PIV
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FIGURE 7. The first 6 POD modes of the streamwise velocity fluctuations.

and the filtered data. Indeed, mode 3 for example shows a region of reversed flow near
the nozzle surface which lies outside the PIV field of view.

An interpretation of the first modes was given in [11]. Mode 0 represents a single patch
of high velocity fluid whose action is to either fill up or empty the separated region. This
can be interpreted as a shear layer flapping motion which shifts the reattachement point
on the nozzle. Mode 1 shows two regions of opposite velocity direction that undulate
the shear layer. In the same sense, mode 2 is a higher order undulation with two zero
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FIGURE 8. The effect of the PIV field of view on the CFD mode shapes.
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(a) Pressure POD mode energy content.
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(b) Cumulative pressure POD mode energy.

FIGURE 9. Single mode and cumulative energy content of the pressure POD modes.

nodes between the alternating velocity regions, which allows in combination with mode
1 a convecting motion of the undulation.

4.4. POD of Pressure Data

Even though there is no experimental pressure field data available, it is interesting to
decompose the CFD pressure in terms of POD modes: the nozzle wall pressure gener-
ates the forces that cause base buffeting and secondly, the 2D modes can be compared
to the POD of the surface pressure distribution measured by the Kulite transducers.

Fig. 9 shows the distribution of relative energy over the different pressure modes .
There is a large difference between the filtered and unfiltered CFD data for the first
modes (see Fig. 9(a)). For the unfiltered CFD data, the first mode contains more relative
energy than the filtered CFD. However, the relative energy drop to the next modes is
more pronounced while for the filtered CFD mode the energy decay is more gradual.
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FIGURE 10. Pressure POD modes.

The qualitative shape of the zeroth mode is similar for the filtered and raw CFD data
while for the raw data, the mode is very strong near the wall.

Mode 1 still compares qualitatively well while all higher mode shapes look different.
Starting from mode 1, one notices the onset of vortical structures in the shear layer that
impinge on the nozzle. In the raw CFD data, this mode is dominated by the foot print of
this shear layer mode which is only barely visible in the current plotting scale. The same
shear layer mode appears clearer in the filtered CFD results.

Modes 2 and 3 differ greatly for the raw and filtered CFD results. While the filtered
results clearly show a shear layer mode, the raw CFD data only give strong fluctuations
near the wall for mode 2 while mode 3 doesn’t show any coherent shape. The differ-
ences are again caused by the different field of views. The middle column of Fig. 10
shows the CFD POD modes when the PIV field of view is considered. As for the velocity
POD modes, these modes are again similar to the filtered CFD results showing that the
field of view has a profound influence on the resulting POD modes. Mode 2 also sug-
gests that the near wall region is especially important since for the raw CFD this mode
is almost completely located outside the PIV field of view.

Fig. 11 shows the mode shapes of the first two CFD cp modes on the Ariane 5 nozzle.
Both modes show a similar structure on the front (at 270◦) and back (at 90◦) with two
distinct regions of opposite sign. They differ however in their relative orientation: for
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FIGURE 11. Surface cp POD modes

0◦

15◦

30◦

45◦

60◦
75◦90◦105◦

120◦
135◦

150◦

165◦

180◦

195◦

210◦
225◦

240◦
255◦270◦285◦

300◦

315◦

330◦

345◦

-6 -4 -2 0 2 4 6

cp × 10−2 [-]

(a) Exp.: mode 0. CFD: mode 1.

0◦

15◦

30◦

45◦

60◦
75◦90◦105◦

120◦
135◦

150◦

165◦

180◦

195◦

210◦
225◦

240◦
255◦270◦285◦

300◦

315◦

330◦

345◦

-6 -4 -2 0 2 4 6

cp × 10−2 [-]

(b) Exp.: mode 1. CFD: mode 0.

FIGURE 12. Surface cp POD modes at location of ring 3. Experimental data. CFD data.

mode 0 the direction of surface pressure is symmetric with respect to the the booster
plane, while it is antisymmetric for mode 1.

This becomes clearer when looking at the polar plots in Fig. 12, which compares the
surface pressure POD data from the pressure transducers and the CFD results. The
orientation of the angles is the same as Fig. 11 when looking in direction of flight. One
notices that the order of the first two CFD modes is reversed and that the numerical re-
sults show significantly higher amplitude values. Even though these plots quantitatively
do not agree well, the mode shapes are similar as they have the largest cp amplitudes
at similar angular locations.

The plot also shows the symmetry of the modes as described above. While Fig. 12(a)
(experimental mode 0) is rotational symmetric with an angle of 180◦, Fig. 12(b) (experi-
mental mode 1) is mirror symmetric with respect to the booster plane (0◦ - 180◦).

4.5. DMD of Velocity Data
This section compares the DMD modes from experiment and simulation data for a sam-
ple length of n = 256. Additionally, the CFD data has been subsampled to StS = 0.85 to
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FIGURE 13. Damping plot for the most dominant DMD modes.

(a) PIV (b) CFD (c) Filtered CFD

FIGURE 14. Comparison of streamwise velocity DMD modes. All datasets have been sampled at
similar sampling frequency and the same number of points.

match the experimental sampling frequency of StS = 0.9. Fig. 13 provides an overview
of the most dominant modes. The damping plot shows the growth rate of different modes
with respect to the mode frequency expressed in Strouhal number. In these type of plots
the symbol size represents the relative mode amplitude. The figure shows that for all
datasets modes are found around St = 0.09, St = 0.37 and St = 0.187. Even though the
datasets show similar dominant mode frequencies, the filtered CFD damping rates are
much higher than for the other two datasets.

Fig. 14 shows the DMD mode shapes for the x-velocity component. All datasets have
been sampled at a similar frequency. Also, the same number of samples has been used
for the PIV and CFD datasets. A comparison of the mode shapes show that although
the frequencies are very similar for most of the modes, the mode shapes differ greatly
and that there is no coherent spatial shape visible as for the POD modes shown in
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FIGURE 15. The four most dominant cp dynamic modes.

Fig. 10. The sampling frequency and sample length have been varied systematically
but there is no improvement towards more coherent spatial modes. One reason for this
could be the presence of intermittent periodic structures that disappear and reappear
during one sampling windows. This affects the DMD algorithm greatly because it is de-
signed to identify non-vanishing periodical structures. We also investigated if the choice
of the plane at 270◦ was rather unfortunate, because the surface pressure data (see e.g.
Fig. 12) suggests that in this plane, very little fluctutations occur and that this might spoil
the signal-to-noise ratio of the modes we are looking at. We therefore rotated the plane
of investigation by 25◦ but the mode shapes did not improve.

Another possibility is that the modal structure of the flow field is inherently three-
dimensional and that a reduction to 2D is not appropriate. This could only be answered
by proper study of the full 3D CFD field dataset which is unfortunately out of the scope
of the summer program. We must therefore conclude that although modes with simi-
lar frequencies are found for the experimental and numerical datasets, no clear mode
shapes are visible and no direct comparison with the POD modes can be made.
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4.6. DMD of Pressure Data
In order to get information on the main buffeting frequencies, we decomposed the 3D
surface cp distribution into its dynamic modes as shown in Fig. 15. This dataset has
been sampled at a Strouhal number of StS = 3.4 using n = 256 samples giving a
maximum resolvable frequency of Stmax = 1.7. The dynamic modes of cp again show
no clear mode shape except for StS = 0.527. This mode shows the same pattern as
the experimental surface cp distribution in Fig. 12(a) (CFD mode 1) although the mode’s
amplitude is about a factor of two smaller than the CFD POD mode. It must also be noted
that the mode frequency of StS = 0.527 agrees very well with the strongest buffeting
frequency reported in the literature [6].

5. Conclusion
In the present investigation the results from a high fidelity IDDES simulation were

compared to high speed PIV measurements for a Mach 0.8 flow over the afterbody of the
Ariane V launcher using straigtforward statistics (mean velocity and rms fluctuations),
POD and DMD. Since PIV has a limited spatial resolution, it is not capable to capture all
the flow length scales that are present. In order to asses this effect on the flow statisctics
and the modal decompositions, the CFD data is spatially filtered in order to mimic the
PIV measurement technique.

When comparing the time averaged flow fields, they look very similar in terms of flow
topology and velocity magnitude. However there is a large difference in rms fluctuations,
where the values predicted by CFD are much larger, even after filtering.

The results from POD applied to the velocity fields show an overall good agreement
and the effect of spatial filtering is not very important. However a direct (one to one)
comparison of the higher modes (larger than 3) is difficult because the energy spec-
trum is rather flat making the mode ranking very sensitive to the data ensemble size.
Furthermore, it is found that the field of view that is considered has a non-negligible ef-
fect on the results (even the mode shapes) which is rather unexpected and needs more
investigation.

Concerning the pressure POD modes a good overall agreement is found for the mode
shapes, however the amplitude also greatly differs. This may be attributed to the fact that
the temporal and spatial filtering involved with the pressure transducers was not taken
into account when performing the CFD pressure POD.

The direct comparison of the DMD results shows dominant modes at similar frequen-
cies for the experimental and the numerical datasets. However, coherent mode shapes
could unfortunately not be extracted from these datasets. When comparing the surface
cp DMD results, a mode shape similar to the second largest POD mode could be ex-
tracted at a frequency close to the strongest base buffeting frequency as reported in the
literature.

6. Acknowledgements
The authors gratefully acknowledge the SFB-TR40 for their support of this research

activity during the Summer Program 2015. We also acknowledge the support from the
ESA TRPs “Unsteady Subscale Force Measurements Within a Launch Vehicle Base
Buffeting Environment” and “Launcher Base Flows and Shock Interaction Regions Im-
proved Load Characterization”.



30 T. Horchler, P. Blinde, C. Serhan, K. Hannemann & F. Schrijer

References

[1] BERKOOZ, GAL AND HOLMES, PHILIP AND LUMLEY, JOHN L (1993) The proper
orthogonal decomposition in the analysis of turbulent flows Annual review of fluid
mechanics, 25(1), 539–575.
[2] GEURTS, E.G.M. (2006) Steady and unsteady pressure measurements on
the rear section of various configurations of the Ariane 5 launch vehicle. Na-
tional Aerospace Laboratory NLR, Report no. NLR-TP-2006-596, Amsterdam, The
Netherlands
[3] GRILLI, MUZIO AND SCHMID, PETER J AND HICKEL, STEFAN AND ADAMS, NIKO-
LAUS A (2012) Analysis of unsteady behaviour in shockwave turbulent boundary
layer interaction. Journal of Fluid Mechanics, 700, 16–28.
[4] HANNEMANN, K. AND LUEDEKE, H. AND PALLEGOIX, J. AND OLLIVER, A. AND
LAMBARE, H. AND MASELAND, J. AND GEURTS, E. AND FREY, M. AND DECK, S.
AND SCHRIJER, F. AND SCARANO, F. AND SCHWANE, R. (2011). Launch Vehicle
Base Buffeting - Recent Experimental and Numerical Investigations. Proc. of the 7th
ESA Symposium on Aerothermodynamics for Space Vehicles, Brugge, Belgium
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