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Recently it has become increasingly clear that the role of a numerical dissipation,
originating from the discretization of governing equations of fluid dynamics, rarely can
be ignored while using explicit or implicit Large Eddy Simulations (LES). The numerical
dissipation inhibits the predictive capabilities of LES whenever it is of the same order of
magnitude or larger than the subgrid-scale (SGS) dissipation. This situation is generally
encountered in LES performed with lower order finite volume (FV) [1] or finite difference
(FD) [2] numerical methods. However, it is expected that numerical dissipation effects
are negligible when high order methods are employed. One of such methods is the
Discontinuous Galerkin Spectral Element Method (DGSEM) that can be regarded as a
hybrid FV and Finite Elements (FE) method [3]. The purpose of this work is a systematic
analysis of the numerical dissipation in the DGSEM method implemented in the code
FLEXI developed by the Numerics Research Group at Stuttgart University. The analysis
uses the procedure proposed recently by [1] that allows to compute the numerical dissi-
pation rate and numerical viscosity in the physical space for arbitrary sub-domains in a
self-consistent way, using only information provided by the code in question. The proce-
dure is implemented for a three-dimensional Taylor-Green vortex (TGV) flow simulated
using the DG method and compared with results obtained previously for the same flow
using a FV code.

1. Introduction
Direct Numerical Simulations (DNS) of turbulent flows are excessively computationally

expensive for complex geometries and/or high Reynolds number flows due to the wide
separation of physical scales that need to be resolved. A relatively successful way to
reproduce the dynamics of Navier-Stokes (N-S) equations while reducing the number of
degrees of freedom is the Large Eddy Simulations (LES) approach. In LES the number
of degrees of freedom is reduced by means of a spatial filter that suppresses the effects
of small scales at the cost of introducing subgrid scale (SGS) unknowns (i.e. for the
incompressible N-S the SGS stress tensor) which must be explicitly modeled [4–6].
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An alternative approach is to use the numerical dissipation coming from the discretiza-
tion of the N-S equations as an implicit LES (ILES) model. The strategy of using the trun-
cation error as implicit model dubbed monotonically integrated LES (MILES) originated
with the idea of [7] and is reviewed by [8]. MILES approach has been controversial and
as such it has been subject of several investigations [9,10]. These studies have not been
particularly encouraging. Even when MILES appears to reproduce qualitatively the dy-
namics of N-S equations a more in depth, quantitative investigation has shown that this
is not the case. [9] showed that the numerical dissipation in a low order compressible
solver is excessive with respect to the correct SGS dissipation leading to poor results
both in ILES and explicit LES (ELES) configuration. However, in the modeling commu-
nity relying on the numerical dissipation in place of explicit SGS models is becoming
more and more popular. Such simulations are often called ILES though a more proper
name should be under-resolved DNS (UDNS). The reason for this trend and the attrac-
tiveness of the approach is its simplicity, the lack of a universal explicit SGS model, and
a qualitative behavior that mimics the dynamics of N-S equations. Furthermore UDNS
simulation often are validated with experimental results which themselves suffer from
high degree of uncertainty.

In order to mitigate the numerical dissipation effects in LES high order numerical
methods should be used. The most common among high order methods are pseudo-
spectral Fourier and Chebyshev methods but their use is restricted to simple geometries,
e.g., a triply periodic box or channel and Blasius boundary layer flows. The Discontinu-
ous Galerkin Spectral Element Methods (DGSEM) offer a high order alternative for sim-
ulating fluid flows in complex geometries [3]. However, the presence of discontinuities at
the elements’ boundaries and sometimes use of filtering to stabilize simulations [11] may
introduce the numerical dissipation into a system. While it is expected that the numerical
dissipation in the DGSEM methods is negligible it is important to establish quantitatively
that this is indeed the case. The purpose of this work is a systematic analysis of the
numerical dissipation in the DGSEM method implemented in the code FLEXI developed
by the Numerics Research Group at Stuttgart University. The analysis uses the proce-
dure proposed recently in [1] that allows to compute the numerical dissipation rate and
numerical viscosity in the physical space for arbitrary sub-domains in a self-consistent
way, using only information provided by the code in question, in this case FLEXI. The
procedure is implemented for a three-dimensional Taylor-Green vortex (TGV) flow simu-
lated using the DG method and compared with results obtained previously for the same
flow using a FV code.

2. Equations and the Procedure for Estimating Numerical Dissipation
Analytical Form

Transport energy equation for compressible Navier-Stokes (N-S) is

∂ρe

∂t
+

∂

∂xj
[(ρe+ p)uj ] =

∂uiτij
∂xj

− ∂qj
∂xj

, (2.1)

where ui are the components of the velocity vector, p the pressure, ρ the density and e
the total energy per unit mass. The constitutive relation between stress and strain rate
for a Newtonian fluid is

τij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
, (2.2)
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the heat flux qi is defined as

qi = −k ∂T
∂xi

, (2.3)

where µ is the dynamic viscosity, k is the thermal conductivity, and T is the temperature.
The definition of total energy is

e = ein + ekin, (2.4)
where ein is the specific energy per unit mass and ekin = 1

2uiui the kinetic energy.
Following the procedure of [1] the transport equation, Eq. (2.1), can be separated into
the contribution of internal energy

∂ρein

∂t
+
∂ρeinuj
∂xj

= −p∂uj
∂xj

+ τij
∂ui
∂xj
− ∂qj
∂xj

, (2.5)

and kinetic energy
∂ρekin

∂t
+
∂ρekinuj
∂xj

= −uj
∂p

∂xj
+ ui

∂τij
∂xj

. (2.6)

After some manipulations the integral form of Eq. (2.6) can be written as

∂

∂t

∫
V

ρekindV +

∫
A

(
ρekinuj + ujp− uiτij

)
njdA

+

∫
V

(
−p∂uj

∂xj
+ τij

∂ui
∂xj

)
dV =

∂

∂t
Ekin + F kin + F ac − F vis −W p + εvis = 0, (2.7)

where F kin, F ac, F vis are the kinetic energy, acoustic and viscous fluxes, nj the outward
unit vector normal to the surface A, W p the work due to pressure and εvis the viscous
dissipation. Notice that in the incompressible limit W p = 0 as ∂uj/∂xj = 0.

We can define a dissipation function ε as

ε =

∫
V

1

ν
τij

∂ui
∂xj

dV, (2.8)

therefore εν = εvis, where ν is the kinematic viscosity ( ν = µ/ρ ). Note that the above
equation is exact only if ν = const in V .

2.1. Discretized Form
The method for quantifying the numerical dissipation was originally developed to analyze
flow fields obtained from a FV code [1]. If we assume a FV spatial discretization and
generic discretization in time then the Eq. (2.7) is contaminated by the truncation and
aliasing errors and we can define a local residual

−εn(m) =
∆Ekin(m)

∆t
+ F kin(m) + F ac(m) − F

vis
(m) −W

p
(m) + εvis(m), (2.9)

where the subscript [ ](m) refers to the mth control volume. We call the residual εn a
numerical dissipation rate because it has been shown that if integrated over a sufficiently
large control volume it has a predominantly dissipative character [1, 12]. This is also
accounted for by a negative sign on the l.h.s. of the definition (2.9) so that εn itself is
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positive as is the viscous dissipation εvis. Following this definition we can recover the
numerical kinematic viscosity as

νn(m) =
εn(m)

ε(m)
. (2.10)

We can extend the above definitions to a sub-domain or to the entire computational
domain

εnsub =

M∑
m

εn(m) ; νnsub =
εnsub
εsub

, (2.11)

where M is total number of adjacent cells of a given sub-domain. For the latter, and in
the incompressible limit, we can define the effective (or total) dissipation as

εeff = εvis + εn = −dE
kin

dt
. (2.12)

2.2. Procedure
Originally the procedure was developed to analyze a TGV flow simulated in a triply
periodic domain on a uniform mesh in each Cartesian direction. To use the developed
analysis tool the results of DG simulations have to be interpolated from nonuniform DG
meshes to uniform meshes required by the tool. Kinetic fluxes in Eq. (2.9) are calculated
as follows

F kin(m) =

(∑
r

(ρekinujnj)(r)∆A(r)

)
(m)

, (2.13)

where subscript [ ](r) represents the sum over the rth face of the mth control volume
and ∆A(r) is the area of the rth face. The other fluxes are computed in a similar fashion.
Volume terms are calculated as (for example the kinetic energy)

Ekin(m) =

(
1

2
ρuiui

)
(m)

∆V(m), (2.14)

where ∆V(m) is the volume of the mth control volume. Note that if we take a periodic

box the contribution of flux terms cancels out. For the time discretization for
∆Ekin(m)

∆t a
second-order three-points finite difference formula is used.

For the infinite Re number limit the viscous terms in Eq. (2.9) are dropped. In the in-
compressible limit (Ma < 0.3) the work due to pressure should be zero but this is not the
case if the flow field is not exactly divergence free (as it can happen with compressible
codes).

3. Numerical method
3.1. The Discontinuous Galerkin Spectral Element Method

FLEXI uses the Discontinuous Galerkin Spectral Element Method (DGSEM) to dis-
cretize the compressible Navier-Stokes equations (NSE). They read in conservation
form

Ut +∇x · F(U,∇xU) = 0, (3.1)
where U denotes the vector of conserved quantities U = (ρ, ρu1, ρu2, ρu3, ρe)

T , the
subscript t the time derivative and ∇x the gradient operator in physical space. The flux
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is split into advection and viscous fluxes, F = Fa(U)− Fv(U,∇xU), and they read as

F al (U) =


ρ ul

ρ u1ul + δ1l p
ρ u2ul + δ2l p
ρ u3ul + δ3l p
ρ eul + p ul

 , F vl (U,∇xU) =


0
τ1l
τ2l
τ3l

τljuj − ql

 (3.2)

with l = 1, 2, 3. The definitions of the viscous stresses τij and the heat fluxes qi can
be found in Eq. (2.2) and Eq. (2.3), respectively. The viscosity coefficient µ, the Prandtl
number Pr, the adiabatic exponent κ =

cp
cv

with the specific heats cp, cv depend on
the fluid and are taken as constant in this work. To close the system of equations, the
perfect gas law

p = ρRT = (κ− 1)ρ(e− 1

2
uiui), e =

1

2
uiui + cvT (3.3)

is used.
In order to solve the system of equations, the computational domain is subdivided

into non-overlapping hexahedral elements, which we allow to be connected in a fully
unstructured, but conforming way. We transform the NSE in a first step to a reference
element E ∈ [−1, 1]3. The associated mapping function x(ξ) is used to calculate the
Jacobian J(ξ) = ∂x

∂ξ . How to construct the metrics while ensuring the so called free-
stream preserving property is shown by Kopriva in [13]. Applying the transformation to
the NSE in conservation form (3.1) leads to

J(ξ)Ut +∇ξ · F(U,∇xU) = J(ξ)Ut +∇ξ · (Fa(U)−Fv(U,∇xU)) = 0, (3.4)

with the transformed fluxes F . In the next step a tensor product of 1-D Lagrange polyno-
mials `N of degree N is employed to express the discrete approximate solution vector
as

U(ξ, t) =

N∑
i,j,k=0

Ûijk(t)ψNijk(ξ) , ψNijk(ξ) = `Ni (ξ1)`Nj (ξ2)`Nk (ξ3) , (3.5)

where Ûijk(t) are the time dependent nodal degrees of freedom in each element. Fol-
lowing Kopriva [14], we choose the N + 1 Gauss-Legendre quadrature points {ξi}Ni=0 as
interpolation nodes. Analogously, the discrete transformed flux F reads as

F l(U(ξ,∇xU(ξ))) ≈
N∑

i,j,k=0

F̂ lijkψNijk(ξ), l = 1, 2, 3. (3.6)

We are going to derive the weak formulation in the next step. Multiplying Eq. (3.4) by a
test function φ(ξ) and integrating over the reference element leads to∫

E

(JUt +∇ξ · F(U,∇xU))φ(ξ) dξ = 0. (3.7)

Following the Galerkin approach the test functions are chosen identical to the basis
functions in Eq. (3.5). Integration by parts yields the weak formulation

∂

∂t

∫
E

JUφdξ +

∮
∂E

(Fa∗n −Fv∗n )φds−
∫
E

F(U,∇xU) · ∇ξ φdξ = 0, (3.8)



6 Castiglioni, Domaradzki, Krais, Beck, Munz & Schranner

where Fa∗n denotes the numerical flux function normal to the surface for the inviscid
terms, given by Fa∗n := F∗n(U+, U−) and superscripts ± denote the values at the grid
cell interface from the neighbor and the local grid cell, respectively. For the inviscid nu-
merical flux we can choose from several approximate Riemann solvers, see e.g. [15] for
an overview. In this work the Roe, HLLC and local Lax-Friedrichs numerical flux func-
tions were used. The numerical flux function for the viscous terms is denoted by Fv∗n ,
resulting from the viscous flux Fv in Eq. (3.4). Through this viscous flux, Eq. (3.8) de-
pends on the solution gradient ∇xU . Since the local gradients of the DG polynomial are
not well suited to compute the viscous fluxes at the cell interfaces due to the discontin-
uous approximation, we use the first method by Bassi and Rebay [16], usually labeled
BR1, to approximate the numerical viscous flux. This procedure is commonly referred
to as lifting. We use a collocation approach and integrate Eq. (3.8) by Gauss quadra-
ture in space on the same nodes used for interpolation. When we apply the numerical
integration a semi discrete form is obtained, that is advanced in time by the fourth order
accurate explicit Runge-Kutta method of Carpenter and Kennedy [17].

3.2. Polynomial de-aliasing

In Eq. (3.6) the nodal fluxes are evaluated on N + 1 Gauss-Legendre quadrature points,
which means that polynomials of degree 2N + 1 are integrated exactly. Since the flux
functions F are non-linear, an additional error due to aliasing is introduced and can
lead to stability issues for underresolved turbulent flows. For low-order DGSEM approx-
imations, the inherent numerical deficiencies like dissipation errors will often lead to
stable but inaccurate results. By increasing the polynomial degree these errors will be
reduced and the resulting discretization will be more sensitive to aliasing, so an addi-
tional stabilization technique must be employed [18]. One approach to stabilization is to
directly tackle the insufficient integration precision by use of a higher amount of integra-
tion points, so-called polynomial de-aliasing [19] or over integration. A straight forward
way to implement this technique into the DGSEM framework is to use a sharp modal
cutoff filter. The overintegrated calculation is then performed with a polynomial degree
of Nover > N , and the approximate solution is filtered in every Runge-Kutta stage be-
fore the spatial residuals are evaluated to contain only the first N + 1 modes. Kirby and
Karniadakis [19] showed that de-aliasing for polynomial spectral methods is achieved
by choosing Nover = 2N for triple and Nover = 3

2N for quadratic non-linear integrands.
Since the test cases in this work are nearly incompressible and the non-linearities in the
flux functions for the incompressible NSE are quadratic, we choose Nover = 3

2N for the
calculations presented here.

4. Results
The Taylor Green Vortex (TGV) flow originally described in [20] is chosen as a test

case. This is the same test case that was used previously to validate the procedure
applied to a research code INCA that implements the ALDM method as an implicit LES
model [1, 21] and for the analysis of numerical dissipation in a commercial code Star-
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Name Elements N NOver Flux Re

N31_OINT_Re# 23 31 47 LF 3000, 1600, 800
N15_OINT_Re# 43 15 23 LF 3000, 1600, 800
N7_OINT_Re# 83 7 11 LF 3000, 1600, 800
N7_OINT_HLLC_Re# 83 7 11 HLLC 3000, 1600, 800
N7_OINT_Roe_Re# 83 7 11 Roe 3000, 1600, 800
N3_OINT_Re# 163 3 5 LF ∞, 3000, 1600, 800
N3_Re# 163 3 −− LF ∞, 3000, 1600, 800

TABLE 1. Overview of all simulated TGV cases. The second column gives a total number of
elements used, N is a polynomial order in individual elements, NOver a polynomial order used for
over integration, and employed numerical flux functions are indicated in column ‘Flux’. Each case
was run for several different Reynolds numbers indicated by Re# in the case name and listed in
the last column.

CCM+ [22]. The initial conditions, following [23], are

u = u0 [sin(x)cos(y)cos(z)] , (4.1)
v = −u0 [cos(x)sin(y)cos(z)] , (4.2)
w = 0, (4.3)
ρ = ρ0, (4.4)

p = p0 +
ρ0

16
[(cos(2x) + cos(2y))(cos(2z) + 2)− 2] , (4.5)

where subscript [ ]0 indicates reference quantities. To obtain nearly incompressible
results, the reference Mach number was set to Ma = 0.1. The initial flow field is let to
evolve for 10 non-dimensional time units where the time unit is T = l0/u0 where l0 = 1
is the reference length.

Numerical dissipation reference data is available for Reynolds numbers ranging from
100 to 3000, see e.g. [1, 22]. FLEXI simulations within this Reynolds number range and
several numerical flux functions have been obtained. To maintain consistency with [1,
22] all FLEXI numerical simulations have been performed with 643 degrees of freedom
(DoF). We vary the number of DG-Elements from 23 to 163 and the polynomial degree
within each element along each spatial direction from 31 to 3. For the lowest polynomial
degree, there are also results available with and without over integration, an overview of
all cases is provided in Tab. 1.

With increasing Re, εn dominates over εvis. Focus is thus set on analysis of the case
with Re = 3000.

4.1. A numerical dissipation analysis of data interpolated to uniform meshes
Within each element, the time-dependent FLEXI TGV simulation data is stored on a non-
uniform mesh. However, the original method [1] was coded assuming data on uniform
meshes. Therefore, to analyse the FLEXI TGV simulations we first interpolate the data,
using oversampling, to a uniform mesh.

First we study the influence of the approximation order of fluxes for an estimate of the
numerical dissipation. Figure 1 depicts εn for case N3_3000 when local differences and
cell-face interpolations in Eq. (2.9) are of approximation order 2 to 8. For fourth and sixth
order approximations the results differ insignificantly. Higher-order approximations lead
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FIGURE 1. Numerical dissipation for different orders of approximation, case N3_3000 with a
uniform grid of 1603 cells is shown.
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FIGURE 2. Numerical dissipation rate within 8 ≤ t ≤ 9. Results from uniform grids of 643 cells
are indicated as ( ), 1283 as ( ), 2563 as ( ).

to 10 − 15% (compared to 4th order) lower εn for t ≥ 8; for other times the difference is
lower than 5%. Yet, especially for finer grids, i.e. 2563 cells or larger, the numerical cost
for an 8th order approximation is signficantly larger than for an approximation order of
four, which allows to provide a good estimate of the sought quantities. For coarser grids
εn may be less accurate due to the less local stencils.

The dependence of estimates on oversampling is investigated by determining the
convergence behavior for the two cases, N31_OINT_3000 and N3_3000. Figs 2(a)
and 2(b) show the εn(t) for equispaced grids of 643, 1283, 2563 cells within the time
frame of the dissipation peak εn. Interpolation to a larger number of equispaced cells is
out of question due to the high demand of hard-disk space. Within this time frame we
determine convergence rates, p = ln

(
εn∆x3

−εn∆x2

εn∆x2
−εn∆x1

)
/ ln 2, of pE1 ≈ 0.4 and pE2 ≈ 0.6 for

when comparing the three grids. Further decrease of εn is expected for finer grids.
The procedure is further evaluated by comparing its results with results obtained for

other simulations of the the same TGV flow. An equispaced post-processing grid with
1603 cells has been chosen for comparisons with numerical dissipation rates and effec-
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FIGURE 3. εn and εeff for N31_OINT_3000 ( ) and N3_3000 ( ) as compared to
ALDM [1] ( ), and DNS data of Brachet et al. (Symbols).

(a) Isosurfaces of positive and negative εn in
x-y-plane (red: εn = 4, blue: εn = −4)

(b) 3-D view of (2π)3 domain. Slices are at z =
−π, x = 0, y = 0 and z = 0.5π.

FIGURE 4. Local numerical dissipation as identified on an equispaced grid of 2563 cells at
t = 8.0, case N31_OINT_3000.

tive dissipation rates of underresolved ALDM simulations with an equivalent number of
DOF [1] and in DNS of Brachet et al. [24]. Compared to ALDM, the numerical dissipa-
tion as identified from the interpolated data is lower, see Fig. 3(a). Moreover, it correlates
better with the onset of under-resolution, in a sense that there is a significant increase
of εn at t ≈ 4 while for earlier times it is negligible. Fewer elements, in conjunction with
a larger polynomial degree, entail lower numerical dissipation rates, compare Fig. 3(a).
Furthermore, N31_OINT_3000-data predictions for the peak εeff are closest to the
DNS results. εeff (t) for 0 ≤ t ≤ 8 as identified from N3_3000 data better approximates
DNS εeff (t) than ALDM predictions.

According to the numerical dissipation evaluation of the interpolated data, Fig. 4, εn

concentrates at the element interfaces, while within the elements the contribution of εn

to εeff is predicted to be negligible. Dissipative structures orient within the x−y plane at
z ≈ ±π and are of a finite height in z-direction. Thereby, in each octant of the TGV these
structures are point-reflection symmetric to the centre of the domain. Yet, in e.g. [1, 25]
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three-dimensional, dissipative structures have been observed to spread more uniformly
instead of focusing at the element boundaries as in fig. 4(b).

4.2. A numerical dissipation analysis of data on DG meshes
We want to compare the results obtained in section 4.1 with results taken directly from
the DG code during runtime. In contrast to the post-processing method, the gradients
obtained by the BR1 procedure are used for the calculations of the spatial terms in the
kinetic energy equation. When the gradients are calculated from the solution variables,
only the local gradients of the polynomial representation of the approximate solution can
be recovered. They do not necessarily correspond to the lifted gradients that are used
during the actual computation. Another difference lies in the fact that no reconstruction is
used over the element boundaries, instead all terms are calculated on the discontinuous
flow field and discontinuous gradient field that is obtained during the DG calculation.

4.2.1. Integral analysis
For a purely integral analysis in a periodic box, we can assume that only the viscous

part of the spatial terms in Eq. (2.9) should have a non-zero contribution to the kinetic
energy balance. This integral contribution is calculated following [26] as

εvis =
2ν

8π3

2πy

0

∂ui
∂xj

∂uj
∂xi

dx, (4.6)

while the integral kinetic energy is taken as

Ekin =
1

16π3

2πy

0

uiui dx. (4.7)

Figure 5 shows the temporal derivative of the kinetic energy and the numerical dissi-
pation obtained by this method for different polynomial degrees and the TGV with both
Re = 3000 and Re = 800. The results for −dE

kin

dt are also compared to DNS data, taken
from Fauconnnier et al. [27] for the Re = 3000 case, and from Brachet et al. [24, 28]
for the Re = 800 and Re = 1600 cases. For the lower Reynolds number case, most
simulations closely follow the DNS data. A significant amount of numerical dissipation
is only observed for the lowest polynomial degree of N = 3. It is also worth noting that
the N = 31 case departs from the reference solution at the late stages, a behaviour
that could indicate some remaining aliasing effects not captured by the over integration.
In practive, a polynomial degree as high as 31 would not be used. When the Reynolds
number is increased, the simulations will become more and more underresolved and
this should lead to an increase in numerical dissipation. This behaviour is verified in the
results for the Re = 3000 TGV. Due to the higher resolution requirements, none of the
simulations can exactly reproduce the DNS data. But again the calculations with the
lowest polynomial degree suffer from the highest numerical dissipation.

4.2.2. Local analysis
To obtain local results for the numerical dissipation, the evaluation of all the spatial

terms in Eq. (2.1) has been implemented in the DG code FLEXI. Since the evaluation
of this equation demands knowledge of second derivatives, the BR1 method has been
applied a second time to the gradients to get a consistent representation of the second
derivatives in the DG context. To be able to validate the local results, the values are
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(a) Results for Re = 800.
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FIGURE 5. Integral results for numerical dissipation from evaluation of derivatives in DG code,
considering only viscous dissipation. Upper curves show − dEkin

dt
, lower curves numerical dissi-

pation. N = 31, N = 15, N = 7, N = 3, ◦ DNS (Brachet et al. [24],
Fauconnier et al. [27]).

Case εvis

Eq. (4.6)
viscous
Eq. (2.1)

pressure
Eq. (2.1)

convection
Eq. (2.1)

εnonly
viscous

εnall
parts

N31_OINT_3000 1.30·10−2 1.30·10−2 −1.86·10−6 1.61·10−4 3.90·10−4 2.36·10−4

N15_OINT_3000 1.09·10−2 1.09·10−2 −7.73·10−6 3.79·10−4 1.37·10−3 1.00·10−3

N7_OINT_3000 1.04·10−2 1.04·10−2 −3.13·10−5 5.71·10−4 1.80·10−3 1.27·10−3

N3_OINT_3000 5.99·10−3 5.98·10−3 −1.85·10−5 4.60·10−4 6.89·10−3 6.46·10−3

TABLE 2. Comparison of integral numerical dissipation obtained by purely integral and local eval-
uations. Second column results for viscous dissipation obtained by Eq. (4.6), third column viscous
dissipation from local evaluation of Eq. (2.1). Fourth and fifth column are pressure and convec-
tive term of Eq. (2.1), respectively. Last two columns numerical dissipation calculated only with
viscous dissipation resp. with all parts of the kinetic energy balance. Evaluation at t = 8.

integrated over the whole domain and compared with the completely integral method in
section 4.2.1. This comparison can be found for several polynomial degrees in Tab. 2
at a non-dimensional time of t = 8. It can be seen that the calculation of the viscous
dissipation from Eq. (4.6) and from the viscous part of Eq. (2.1) yield the same results.
Although the pressure and convection parts of Eq. (2.1) should be equal to zero in an
analytical setting, they do have a contribution to the discrete kinetic energy balance.
However, the viscous dissipation is the dominating factor in the evaluation of the numer-
ical dissipation.

To compare the local results obtained in the DG code to the local results from the
post-processing tool, Fig. 6 shows isosurfaces of the numerical dissipation from the
evaluation in the DG code for a TGV computed with a polynomial degree of N = 31 and
at a Reynolds number ofRe = 3000. The same plot with results from the post-processing
tool can be found in Fig. 4(a). The results for t = 8 show that by reconstructing over
the discontinuous element boundaries the post-processing tool generates oscillations
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FIGURE 6. Local distribution of numerical dissipation for case N31_OINT_3000 at t = 8, top
view. Isosurfaces of εn = ±4. Evaluation done in DG code.

originating at the element interfaces. While in the results obtained from the DG code
high numerical dissipation is still centered around the boundaries, there is no oscillation
visible.

5. Conclusions
The numerical dissipation rate in DG simulations of the Taylor-Green vortex flow has

been estimated using the general technique of [1] implemented in two different ways.
First, to be able to use the existing analysis tool restricted to data on uniform meshes
the DG generated fields on nonuniform meshes were interpolated to uniform meshes
with a number of grid points in each direction doubling from 64 through 128 to 256.
For a fixed polynomial order N the computed numerical dissipation showed expected
qualitative behavior of decreasing for increased resolution. However, because of a low
convergence rate of the results with increasing interpolated mesh resolution we were
not able to obtain firm quantitative results for all polynomial orders considered. While
the numerical dissipation estimates for a low order N = 3 are consistent with the previ-
ous estimates for standard FV data the results for high order polynomials, in particular
N = 31, are neither converged nor accurate. This led us to a second implementation
of the procedure that used only the original DG data and the calculation of terms in
definition (2.9) relying on high order numerical differentiations formulas used in the DG
code itself. The numerical dissipation computed this way was comparable to that found
using the interpolated data for N = 3 but was substantially less for higher polynomial
orders N . To further clarify the origin of the observed differences a local analysis of the
numerical dissipation was performed for the case N = 31. The analysis revealed that
the main contribution to the numerical dissipation comes in both cases from the vicin-
ity of elements’ boundaries. However, the interpolation produces spurious oscillations
with significant amplitudes near element interfaces, leading to inaccurate results for the
numerical dissipation while the DG evaluation is free of these defects.

We conclude that for sufficiently high order N the DGSEM simulations are not af-
fected significantly by the numerical dissipation effects. However, for the very low order
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N = 3 the numerical dissipation in the DG method is comparable to that observed for
standard FV codes and is not entirely negligible even for a slightly higher order N = 7.
A secondary conclusion, based on our experience with the interpolated data, is that it is
advisable and safer to implement the procedure for estimating the numerical dissipation
using numerical formulas and discretizations from the analyzed code itself. Neverthe-
less, it is possible that simply avoiding an interpolation to uniform grids will produce
accurate results. Therefore, we plan to extend the original, FV based analysis on uni-
form meshes of [1] to non-uniform meshes.
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