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Heat release and high-temperature gas effects
in shock/shear-layer interaction

By R. C. Tritarelli AND L. Kleiser
Institute of Fluid Dynamics, ETH Zurich, 8092 Zurich, Switzerland

The interaction of a steady oblique shock wave with a planar shear layer is analysed,
including the effect of heat addition and variable heat capacity ratios across the shock.
The investigation is performed in the fast-reaction limit, where the shock wave and the
following chemical reaction zone are considered as a single discontinuity, neglecting the
induction zone between the shock wave and the reaction zone. The high-temperature
gas effects, such as the activation of vibrational degrees of freedom, are incorporated
using a two-γ shock jump relation and are described using a harmonic oscillator model.
An ordinary differential equation governing the shock angle across the shear layer is
derived by making use of the Moeckel-Whitham approximation. Hence the result for the
shock angle variation across the shear layer can be interpreted as an extension of the
Moeckel-Whitham theory for detonation waves with a variable heat capacity ratio across
the shock. Possible implications of the shock angle variation on the shock-induced vor-
ticity are discussed.

1. Introduction
As the growth rate of shear layers decreases with increasing convective Mach num-

ber (Papamoschou et al. [1]), scramjets (supersonic combustion ramjets) require mix-
ing enhancement techniques in order to achieve efficient mixing and combustion. This
need is emphasised by the reduction of growth rates in reacting shear layers compared
to their non-reactive counterparts, see Mahle [2]. Shock/shear-layer interaction (SSLI)
is of great interest as mixing enhancement technique in supersonic combustion sys-
tems [3]. First analytical investigations of SSLI were made by Moeckel [4] who derived
an ordinary differential equation governing the angle of the propagating shock across
the shear layer. The assumption was made that multiply reflected waves can be ne-
glected. Later on Whitham [5] discovered that his characteristic rule is equivalent to
neglecting multiply reflected waves as done by Moeckel [4]. Hence this approximation is
termed Moeckel-Whitham approximation in the remainder of our study. By making use
of this approximation, Buttsworth [6] studied the vorticity production of the SSLI. It was
shown that vorticity is produced if the density gradient and velocity gradient of the shear
layer were in the same direction. Similar to Moeckel [4] and Whitham [5], he derived
his results based on the classical oblique shock wave equations for a perfect gas and
adiabatic conditions.

For several applications in supersonic combustion the heat release associated with
the shock cannot be neglected and the thermodynamic state across the shock may
change from vibrationally frozen to vibrationally excited. Hence the assumption of con-
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FIGURE 1. Schematic of the shock/shear-layer interaction.

stant specific heat capacity ratios γ and adiabatic conditions across the shock may be
too restrictive.

In the present study these restrictions shall be alleviated, and the effect of heat ad-
dition and vibrational activation shall be included in the study of SSLI. The equation
for the variation of the shock angle across the shear layer will be derived by making
use of the two-γ shock jump equations (Li et al. [7], Bartlmä [8]). The derived equation
can be seen as an extension of the Moeckel-Whitham theory to detonation waves. In a
first approximation, the shock wave and the following reaction zone are considered as
a single discontinuity, neglecting the induction zone between shock wave and reaction
zone, i.e. equilibrium conditions are assumed. This treatment in the fast-reaction limit is
permissible as long as the length scale of the induction zone δind is negligible compared
to the length scale of the shear layer l, i.e. δind ≪ l. A schematic of the SSLI is depicted
in Fig. 1.

The remainder of this paper is structured as follows. In section 2, the governing equa-
tions across the oblique shock wave, i.e. the two-γ shock jump equations, are presented
and discussed with respect to the possible impact on the SSLI vorticity production. In the
following section 3 the equation governing the shock angle variation due to pre-shock
Mach number non-uniformities is derived and analysed regarding the impact of heat
addition and variable heat capacity ratios. In section 4 the possible impact of the shock
curvature on the shock-induced vorticity is discussed; a conclusion and an outlook for
future studies are presented.

2. Governing equations
2.1. Two-γ shock jump equations

The governing equations for oblique shock waves are covered in many textbooks and
were the starting point for the derivations of Moeckel [4], Whitham [5] and Buttsworth [6].
In classical textbooks the development of the shock jump relations does not take into
account varying specific heat capacity ratios γ between the pre-shock and post-shock
state, as present for vibrationally active molecules, such as nitrogen and oxygen. The
present chapter presents the two-γ shock jump relations with heat addition, which forms
the starting point for the extension of the Moeckel-Whitham theory in the subsequent
chapter. The two-γ shock jump relations are discussed in the works by Li et al. [7] and
Bartlmä [8]. The equations for oblique shock waves can directly be obtained from the
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normal shock jump equations and hence the equations for a normal shock are stated
first. The governing equations of mass, momentum and energy across a normal shock
wave can be written as follows

ρ1un,1 = ρ2un,2 (2.1)

p1 + ρ1u
2

n,1 = p2 + ρ2u
2

n,2 (2.2)

h1 + 1

2
u2

n,1 + q = h2 + 1

2
u2

n,2 (2.3)

where ρ, un, p and h are respectively the density, normal velocity, pressure and enthalpy.
The conditions 1 and 2 refer to the pre-shock and post-shock state, respectively. q is the
heat addition per unit of mass. In the present analysis, we are considering a thermally
perfect but not calorically perfect gas, which satisfies the following thermodynamic prop-
erties

hj = hj(T ) = cp,j(Tj)Tj (2.4)

a2

j = γjpj/ρj (2.5)

pj = ρjRjTj (2.6)

γj = cp,j/cv,j with cp,j = cv,j +Rj (2.7)

where j ∈ {1,2} and aj , γj , cp,j , cv,j and Rj are the speed of sound, heat capacity
ratio, isobaric and isochoric heat capacity as well as the mass-specific gas constant,
respectively. The functional temperature dependence of cp,j(T ) will be discussed in the
following section 2.2. Note that in general the equilibrium speed of sound for a non-
perfect gas is given as

a2 = γRT
1 + (1/p)(∂e/∂v)T

1 − ρ(∂h/∂p)T , (2.8)

where e and v are the internal energy and specific volume, respectively (Anderson [9]).
Since we are considering a thermally perfect gas where hj = hj(T ), Eq. (2.8) reduces to
Eq. (2.5). Equations (2.4) and (2.5) are not directly applicable to SSLI with a change in
γ due to dissociation, as we would have h = h(T, p) and hence γ = γ(T, p) and a would
need to be computed following Eq. (2.8).

From the governing equations, the shock jump relations can be derived (Li et al. [7]).
The pressure variation across a shock reads

f
2γ
1
(M1, θ, γ1, γ2, q̄) ∶= p2

p1

= (1 + β)γ1 M2
n,1 − γ2β + 1

γ2 + 1
, (2.9)

with Mn,1 being the pre-shock normal Mach number defined as Mn,1 ∶=M1 sin θ. θ refers
to the shock angle and β is an auxiliary variable defined as

β ∶=
¿ÁÁÀ1 − 2 (γ2

2
− 1)M2

n,1 (q̄ + η)
(M2

n,1 − Γ)2 , (2.10)

where we made use of

η ∶= Γ − 1

(γ1 − 1)(γ2 − 1) , and Γ ∶= γ2

γ1

. (2.11)

For the case of an adiabatic shock and a constant heat capacity ratio β reduces to
β = 1 and the shock jump equations reduce to the Rankine-Hugoniot relations. The heat
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addition q was normalised by the pre-shock speed of sound q̄ ∶= q/a2
1. The pressure ratio

was abbreviated as f
2γ
1

, where the superscript 2γ indicates that the pre-shock and post-
shock heat capacity ratios are assumed to be a priori known constants, i.e. γ1 and γ2

are not functions of M or θ, respectively. This shall be contrasted to fHO
1 , which will be

defined in the subsequent section (the superscript HO stands for harmonic oscillator).
In that case, γ2 will be a solution of the governing and constitutive equations and hence
depend on M and θ.
The density ratio ε can be computed as

ε2γ(M1, θ, γ1, γ2, q̄) ∶= ρ1

ρ2

= 1 − 1 + β

γ2 + 1
(1 − Γ/M2

n,1). (2.12)

The ratio of speeds of sound is given by

a2
2

a2
1

= γ1

γ2

p2

p1

ρ1

ρ2

, (2.13)

and hence the temperature ratio follows immediately as

T2

T1

= γ1 R1

γ2R2

a2
2

a2
1

. (2.14)

The flow deflection angle ω (see Fig. 1) can be evaluated as

ω = θ − arctan [γ2 − β

γ2 + 1
tan θ + 2Γ (1 + β)

(γ2 + 1)M2
1

sin(2 θ)],
ω =∶ f2γ

2
(M1, θ, γ1, γ2, q̄) ,

(2.15)

(Li et al. [7]) and the post-shock Mach number is given by

M2

2 = [M2

1,n ((ρ1

ρ2

)
2

− 1) +M2

1 ] γ1

γ2

p1

p2

ρ2

ρ1

(2.16)

(Bartlmä [8]). Analogous to the case of a normal shock, a critical heat addition for a
given shock angle θ exists. The critical normalised heat addition is given by

q̄
2γ
crit
(M1, θ, γ1, γ2) =

(M2
n,1 − γ2/γ1)2

2 (γ2
2
− 1)M2

n,1

− η (2.17)

(Bartlmä [8]). At critical conditions we have β = 0. In the remainder the heat addition
across an oblique detonation wave will be expressed as fraction of the critical heat
addition.

2.2. Harmonic oscillator model

In the previous section the pre-shock and post-shock heat capacity ratios were assumed
to be a priori known quantities. In the following the temperature dependence of the heat
capacity will be described by a simplified model for vibrational excitation, i.e. the har-
monic oscillator model [10], which allows to make use of a non-dimensional formulation
of the problem. The volumetric heat capacity for a diatomic molecule can be written as

cv,j (T̃j,vib) = Rj

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5

2
+
⎡⎢⎢⎢⎢⎣

1/ (2 T̃j,vib)
sinh (1/ (2 T̃j,vib))

⎤⎥⎥⎥⎥⎦

2⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (2.18)
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where we made use of the non-dimensional temperature T̃vib = T /Tvib with Tvib being
a characteristic vibrational temperature of the species under consideration. Character-
istic vibrational temperatures of interest for scramjet applications are Tvib,O2

= 2273K,
Tvib,N2

= 3395K, and Tvib,H2
= 6332K, see Karl [11]. Obviously from the definition of

Eq. (2.18) we obtain that γj = γj(T̃j,vib).
For the limits of small and large T̃vib one can define cv,di and cv,vib as

cv,di ∶= lim
T̃vib→0+

cv,j(T̃vib) = 5/2Rj , (2.19)

cv,vib ∶= lim
T̃vib→∞

cv,j(T̃vib) = 7/2Rj , (2.20)

where (⋅)di and (⋅)vib refer to a diatomic molecule without and with complete vibrational
excitation, respectively. In the same limits we obtain γdi = 7/5 and γvib = 9/7.

Once the harmonic oscillator model is used as constitutive relation, the functional
dependence of the pressure ratio, the density ratio, etc. across the shock wave are
altered. This change in functional dependence is shown exemplary for the pressure
ratio, which reads

fHO

1 (M1, θ, T̃1,vib, q̄) ∶= f
2γ
1
(M1, θ, γ1(T̃1,vib), γ2(T̃2,vib(M1, θ, T̃1,vib, q̄)), q̄). (2.21)

The normalised post-shock temperature T̃2,vib and the heat capacity ratio γ2 can be
obtained by solving simultaneously Eq. (2.14) and Eq. (2.18). Note that

∂f
2γ
1

∂M
≠ ∂fHO

1

∂M
, (2.22)

as for fHO
1 a change in M induces a change in γ2, whereas it does not for f

2γ
1

. This
formal difference is of importance for the application of the Moeckel-Whitham theory to
oblique detonation waves in the following chapters. Note that for vibrational activation
across a shock wave we have γ2 < γ1, and hence η < 0. From Eq. (2.10) it can be
concluded that the effect of vibrational activation is similar to a heat sink across the
shock wave. This heat sink will result in a higher density ratio across the shock wave
and thereupon increase the vorticity production due to SSLI. The impact of the variable
γ on the density ratio will be analysed below.

2.3. Effect of vibrational activation on the amplification factor Zε

In order to study the impact of variable heat capacity ratios on the vorticity production,
it is of importance to study the density ratio across a shock wave as a function of the
non-dimensional pre-shock temperature T̃1,vib, as the vorticity production is a function of
the density ratio across the shock. In the following sections the vorticity production due
to shock wave curvature will be discussed. It will be seen that this part of the vorticity
production is proportional to Zε, which is defined as

Zε ∶= (1 − ε)2
ε

. (2.23)

In order to highlight the impact of variable heat capacity ratios, we will investigate the
normalised amplification factor defined as

Zε,di(M1, θ, T̃1,vib, q̄) ∶= ZHO
ε (M,θ, T̃1,vib, q̄)

lim
T̃1,vib→0+

ZHO

ε (M,θ, T̃1,vib, q̄) , (2.24)



208 R. C. Tritarelli & L. Kleiser

which is the ratio of the amplification factor of a two-γ shock to that of a single-γ shock
with frozen vibrational motion. Similar to Zε,di, Zε,vib can be defined by computing in the
denominator of Eq. (2.24) a limit of T̃1,vib tending to infinity instead of computing a limit
tending to zero. We will analyse Zε,di and Zε,vib for constant incident shock angles. In
the presented results, we make use of the following parametrisation of the heat addition
across the oblique detonation wave

αθ ∶= q̄

q̄
2γ
crit
(M1, θ, γdi, γdi)

. (2.25)

Hence, απ/2 indicates that the heat addition has been normalised with the critical heat
addition for a normal shock.

It can be seen from Figs. 2 and 3 that the density jump and therefore the amplifica-
tion factor Zε are increased due to vibrational activation. This effect is most pronounced
at intermediate temperatures, where the vibrational activation acts like a heat sink and
reduces the post-shock temperature and increases the post-shock density. We can ob-
serve from the right part of Figs. 2 and 3 that the impact of vibrational activation on Zε

is more important for detonation waves than for adiabatic shock waves as Zε is increas-
ing with απ/2. Comparing Figs. 2 and 3, both analysing Zε but making use of different
normalisations, one can observe that interpretations have to be made with care when
discussing trends regarding Mach number and heat addition. In the left part of Fig. 3 one
can recognise that the impact of vibrational activation reduces with increasing Mach
number. This trend holds true when Zε is normalised with the high-temperature limit.
This observation is expected, as the ratio of the pre-shock thermal to the pre-shock ki-
netic energy reduces with increasing Mach number, such that in the hypersonic limit the
density ratio depends exclusively on post-shock quantities (Hayes and Probstein [12]),
which means

lim
Mn,1→∞

ε = γ2 − 1

γ2 + 1
. (2.26)

From this it can be concluded that the maximum of Zε,vib tends to unity as the normal
Mach number tends to infinity, which is observed in Fig. 3. On the other hand a non-
monotonic behaviour of the maximum of Zε,di with respect to Mach number is observed
in Fig. 2. Thus a conclusion regarding the effect of Mach number on the importance of
vibrational activation in Zε is difficult and depends on the particular normalisation of Zε.
On the contrary, the trend regarding απ/2 is the same for Zε,di and Zε,vib, and we can
conclude that the importance of including the vibrational activation in the computation
of Zε increases with increasing heat addition. The augmentation of Zε due to vibrational
activation can engender an increase of vorticity production due to SSLI. In order to as-
sess this vorticity production, the impact of vibrational activation on the shock curvature
needs to be analysed. To this end we derive an extension of the Moeckel-Whitham the-
ory in the following section.

3. Extension of the Moeckel-Whitham theory
3.1. Shock angle variation for a non-uniform pre-shock Mach number distribution,

under the restriction γ2 = γ3 = γ4

In order to derive the variation of the shock angle through a shear layer of varying in-
coming Mach number, the assumptions are made that the incoming flow is parallel and
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levels of heat addition απ/2.
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FIGURE 3. Normalised amplification factor Zε,vib for (left) adiabatic conditions and variable Mach
numbers and (right) constant Mach number Mn = 1.5 and different levels of heat addition απ/2.

that pressure gradients are negligible. The post-shock state is assumed to remain su-
personic, and the pre-shock Mach number is assumed to vary continuously, such that
the Mach number variation can be split into a sequence of infinitesimal Mach number
changes δM1, where δ indicates small changes. In contrast to Buttsworth [6], no adia-
batic conditions are assumed and the heat capacity ratio is allowed to change through-
out the shock wave. The situation is sketched schematically in Fig. 1. The pre-shock
heat capacity ratio γ1 is assumed to be constant, i.e. γ1 ≠ γ1(y). Additionally we will
assume γ2 = γ3 = γ4, but we will allow a change of heat capacity ratios across the
shock, i.e. γ1 ≠ γ2. The incident shock wave will be partially transmitted and partially
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reflected. Due to the small Mach number change, the reflected wave can be assumed
to be an isentropic (expansion or compression) wave. The nature of the reflected isen-
tropic wave depends on the combination of Mach number, shock angle, heat addition
and non-dimensional temperature. The flow across the dividing streamline will be paral-
lel and have the same pressure. Hence the conditions across the slip line are

p3 = p4, (3.1)

ω3 = ω4, (3.2)

with p4 = p2 + δp4 and p3 = p2 + δp3. From these conditions we can derive the change
in shock angle δθ due to a change in Mach number δM1. We are following the lines of
the derivation by Buttsworth [6], but we are starting from the two-γ shock jump relations
instead of starting from the classical Rankine-Hugoniot relations. Equation (2.9) govern-
ing the pressure jump across the shock can be linearized for small normal Mach number
variations δMn,1, resulting in

δp4

p1

= 1

γ2 + 1
[2γ1 Mn,1(1 + β) + γ1 M2

n,1β
′ − γ2 β′] δMn,1, (3.3)

where δMn,1 can be written as

δMn,1 = δM1 sin θ + δθ1M1 cos θ (3.4)

and β′ ∶= dβ

dMn,1
. The following useful relations can be defined

βM1
= ∂β

∂M1

= dβ

dMn,1

sin θ = β′ sin θ, (3.5)

βθ = ∂β

∂θ
= dβ

dMn,1

M1 cos θ = β′M1 cos θ, (3.6)

β′ = (1 − β2) (M2
n,1 + Γ)

βMn,1 (M2
n,1 − Γ) (3.7)

(Li et al. [13]). Note that as q̄ tends to q̄crit, β tends to zero and β′ tends to infinity. In the
present analysis the heat addition will be limited to sub-critical conditions.

In a similar way Eq. (2.15), describing the flow deflection angle, can be written after
neglecting higher order terms as

A δM1 +B δθ + C δω = 0. (3.8)

The terms A, B and C can be derived to be

A =M1(γ2 + 1) cos θ sin θ [M3

1 βM1
sin2 θ − ΓβM1

M1 + 2Γ(1 + β)] , (3.9)

B = (β + 1) sin2 θ (γ2 + 1 + (β − 1 − 2γ2) sin2 θ) M4

1

+Γ (β + 1) (γ2 + 1 − 2 (β + 1) sin2 θ) M2

1 + Γ2 (1 + β)2
+βθ (γ2 + 1) sin θ cos θ (M4

1 sin2 θ − ΓM2

1 ),
(3.10)

and

C = sin2 θ ((1 − β2 + 2γ2 (β + 1)) sin2 θ − (γ2 + 1)2) M4

1

−2Γ (1 + β) (γ2 − β)M2

1 sin2 θ − Γ2 (β + 1)2. (3.11)

For the case β = 1, β′ = 0, and Γ = 1 we obtain the equations derived by Buttsworth [6].
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Combining the pressure change across the reflected isentropic wave with the require-
ment of matched flow direction, one obtains

δp3

p2

= − γ2M
2
2

(M2
2
− 1)1/2 δω. (3.12)

The previous equation can be abbreviated using the following definition

f
2γ
3
(M1, θ, γ1, γ2, q̄) ∶= γ2M

2
2

(M2
2
− 1)1/2 . (3.13)

The condition of matched pressure implies that

δp4

p1

= δp3

p2

p2

p1

. (3.14)

Combining Eqs. (3.3), (3.12) and (3.14) results in

[2Mn,1(1 + β) +M2

n,1β
′ − Γβ′]δMn,1

+ M2
2

(M2
2
− 1)1/2 [(1 + β)γ2 M2

n,1 − Γγ2 β + Γ] δω = 0.
(3.15)

Equations (3.15) and (3.8) can be used to eliminate δω, which results in an equation of
the form

δθ

δM
= −

1

f
2γ
1

∂f
2γ
1

∂M
+ f

2γ
3

∂f
2γ
2

∂M

1

f
2γ
1

∂f
2γ
1

∂θ
+ f

2γ
3

∂f
2γ
2

∂θ

. (3.16)

Equation (3.16) describes the variation of the shock angle due to a single and isolated
Mach number jump δM . By neglecting multiple reflections we can replace δθ/δM by
dθ/dM and obtain a nonlinear ODE which describes the variation of the shock angle
through the shear layer

f2γ(M,θ, γ1, γ2, q̄) ∶= dθ

dM
= −

1

f
2γ
1

∂f
2γ
1

∂M
+ f

2γ
3

∂f
2γ
2

∂M

1

f
2γ
1

∂f
2γ
1

∂θ
+ f

2γ
3

∂f
2γ
2

∂θ

, (3.17)

where f
2γ
1

, f
2γ
2

, and f
2γ
3

were defined previously. ∂f
2γ
1

∂M
and ∂f

2γ
1

∂θ
can be obtained from

Eqs. (3.3) and (3.4), and we have

∂f
2γ
2

∂M
= −A/C, (3.18)

∂f
2γ
2

∂θ
= −B/C. (3.19)

Note that similar to the definition of fHO
1 (Eq. (2.21)) we can define fHO. Equation (3.17)

is identical to the equations given by Moeckel [4] and Whitham [5], however the functions
f

2γ
1

, f
2γ
2

, f
2γ
3

, and their derivatives are different as we took the two-γ shock relations as
a starting point for the derivation. As discussed by Whitham [5], neglecting multiply re-
flected waves is identical to applying his characteristic rule. The assumption of neglect-
ing secondary waves and other multiply reflected waves in the Moeckel-Whitham theory
is analogous to the assumptions underlying the Chester-Chisnell-Whitham (CCW) the-
ory, see [5,14].
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3.2. Shock angle variation for a non-uniform pre-shock Mach number distribution,
under the restriction γ2 = γ3

In the previous section we computed the shock angle variation for a non-uniform pre-
shock Mach number distribution under the restriction that γ2 = γ3 = γ4. If we alleviate
this restriction we can compute the shock angle variation in a similar manner as

gHO(M1, θ, T̃1,vib, q̄) ∶= dθ

dM
= −

1

fHO

1

∂fHO

1

∂M
+ fHO

3

∂fHO

2

∂M

1

fHO

1

∂fHO

1

∂θ
+ fHO

3

∂fHO

2

∂θ

. (3.20)

The assumption that γ2 = γ3 is still made, i.e. the heat capacity is assumed to be con-
stant across the isentropic wave. It can be observed that Eqs. (3.17) and (3.20) are
identical after replacing f

2γ
k by fHO

k for k ∈ {1,2,3}. It should be noted that gHO ≠ fHO

and that g2γ does not exist. Additionally it should be noted that in Eq. 3.17 all the terms
were expressed in an analytical form. In the present study we did not express all the
terms of Eq. 3.20 analytically. The partial differentials in the formulation of gHO were
hence evaluated numerically. Comparisons of fHO to gHO will be presented in the fol-
lowing section.

3.3. Numerical evaluation of the shock angle variation

In the previous sections, we saw that Zε was increased due to vibrational activation
(Figs. 2 and 3). In the current section the shock angle variation will be analysed with
respect to its variation for different non-dimensional temperatures T̃1,vib. To this end we
will analyse the shock angle variation dθ

dM
normalised with the diatomic limit, i.e.

dθ

dM
∣
di

∶=
dθ
dM
(M,θ, T̃1,vib, q̄)

lim
T̃1,vib→0+

dθ
dM
(M,θ, T̃1,vib, q̄) . (3.21)

The normalised shock angle variation dθ
dM
∣
di

can be evaluated using either fHO or gHO

for the shock angle variation dθ
dM

. In the left part of Fig. 4 we observe that due to vi-
brational activation the shock angle variation is reduced for the largest part of the tem-
perature range. At low temperatures a small increase can be observed for gHO or more
precisely for dθ

dM
∣
di

based on gHO. The minimum of dθ
dM
∣
di

based on fHO and gHO is

observed for an intermediate temperature range around T̃1,vib ≈ 0.25. For the present
combination of Mach number and shock angle θ, gHO is larger than fHO. This observa-
tion does not hold true in general. The ratio of gHO to fHO depends on the combination
of M and θ and depends most likely on the fact that the reflected isentropic wave in
Fig. 1 can be a compression wave or an expansion wave. The ratio of gHO to fHO is
expected to be a function of the type and strength of the reflected isentropic wave. This
is an open question, which will be analysed in future studies. For both plots in Fig. 4 a
constant incident shock angle θ was assumed. The right part of Fig. 4 shows the effect
of adding heat across the shock wave. The impact of vibrational activation on dθ

dM
∣
di

is
more important for a detonation wave than for a shock wave if the shock angle variation
is normalised with the diatomic limit.

From the precedent results a reduction of vorticity production due to vibrational acti-
vation could be expected, as the reduction of the shock angle variation due to vibrational
activation is equivalent to a reduction of the shock curvature. The question rises whether
the effect of the reduced curvature or the effect of the increased amplification factor Zε

is dominant.



High-temperature gas effects in shock/shear-layer interaction 213

0 0.2 0.4 0.6 0.8 1
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

T̃ 1 , v i b

d
θ
/
d
M

| d
i

f H O

g H O

M = {2,3,4,5}

0 0.2 0.4 0.6 0.8 1
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

T̃ 1 , v i b

d
θ
/
d
M

| d
i

f H O

g H O

αθ = {0,0.2,0.4}

FIGURE 4. Shock angle variation dθ

dM
for (left) adiabatic conditions with different Mach numbers

and (right) constant Mach number M = 4 for different levels of heat addition αθ. The incident
shock angle in both cases is θ = π/4.

4. Possible implications of vibrational activation on shock-wave-induc ed
vorticity and conlusions

In the previous sections we have seen two counteracting trends affecting the vorticity
production, i.e. the increase of the amplification factor Zε and the decrease of the shock
angle variation due to vibrational activation. In order to study the vorticity production
across a curved shock in a non-uniform flow we can make use of Hayes’ vorticity equa-
tion [15]. This is a dynamical relation, which can also be applied to detonation waves. As
shown by Buttsworth [6], for a planar problem, Hayes’ vorticity equation can be written
as

ζ2 = [Z dθ

dM
+ 2 (ε − 1) sin2 θ − ε sin2 θ − 1

ε
cos2 θ] du1

dy

+ [Z dθ

dM
+ 2 (ε − 1) sin2 θ] u1

2ρ1

dρ1

dy
,

(4.1)

where ζ2 is the post-shock vorticity, Z is defined as

Z ∶= (1 − ε)2
ε

M1 sin θ cos θ = Zε M1 sin θ cos θ, (4.2)

and Zε was already defined in Eq. (2.23) and discussed in previous sections. From
Eq. (4.1) we can see that the vorticity production due to the curvature of the shock is
proportional to Z dθ

dM
. Based on the results of the present study we observe that the

vorticity is enhanced due to vibrational activation if considering constant incident shock
angles, as the increase in Zε (Fig. 2) is larger than the reduction of shock angle variation
(Fig. 4).

In conclusion, we derived an equation governing the shock angle variation dθ/dM for
a thermally perfect (but not calorically perfect) gas. We observed that Zε is increased
due to the vibrational activation whereas ∣dθ/dM ∣ is reduced when considering constant
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incoming shock angles. Hence, we observe two counteracting trends influencing the
vorticity production due to shock curvature. However, the impact of vibrational activation
is much larger for Zε than for dθ/dM . We can conclude that vibrational activation in-
creases the vorticity production due to shock curvature if considering constant incident
shock angles for all non-dimensional temperatures T̃1,vib. Future investigations shall
analyse whether this trend holds true if the deflection angle is kept constant for all non-
dimensional temperatures T̃1,vib. Additionally, we shall analyse the complete vorticity
production across the shock wave and compare the ratio of the vorticity production due
to shock curvature to the total vorticity production. Furthermore, the (M,θ)-phase-space
will be classified regarding the nature of the reflected isentropic wave and we will make
use of this classification in order to discuss the ratio of gHO to fHO.
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