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Flow separation strongly affects flows for unmanned aerial vehicles (UAV), micro air
vehicles (MAV) and turbomachinery. The unsteady effects of flow separation greatly
influence blade/wing lift and drag thus performance of UAV’s, and efficiency and robust-
ness of turbomachinery because of its impact on high cycle fatigue (HCF). The Reynolds
numbers for the aforementioned devices are usually low to moderate. Low Reynolds
number separated flows have been successfully simulated using direct numerical sim-
ulations (DNS). However, the large computational cost of DNS makes this technique
not practical for industrial applications. Reynolds averaged Navier-Stokes (RANS) tech-
niques have been only partially able to predict some features of low Reynolds number
separated flows so far, leaving Large Eddy Simulation (LES) as a primary candidate for
fast and accurate prediction tool for such flows. In this report we investigate the ability of
LES techniques to accurately predict the behavior of such flows at a computational cost
reduced significantly from the cost of DNS. We have performed 2-D and 3-D simulations
of a laminar separation bubble on a NACA-0012 airfoil at Rec = 5 × 104 at 5 degree of
incidence with resolution reduced from that used in DNS. For the 2-D simulations the
results to date show good predictions for the pressure coefficient Cp and the friction co-
efficient Cf but only when using dissipative numerical schemes. For the 3-D simulations
the results show a good prediction of the separation point, but inaccurate predictions of
the reattachment point.

1. Introduction
Reynolds numbers for flows in rotating machinery, for unmanned aerial vehicles (UAV),

micro air vehicles (MAV), wind turbines, and propellers are usually low or moderate.
Based on wing/blade chord they are typically less than 2 × 106 and often only on the
order of a few 104 − 105. By comparison, civilian aeroplanes are characterized by the
Reynolds numbers ranging from few millions to 80 × 106 for the Boeing 747 at cruising
velocity. There is a long history of research on high Reynolds number aerodynamics,
driven by its importance in the aerospace industry, and there exist robust numerical
tools for the prediction of lift and drag forces for streamlined bodies. The recent experi-
mental investigations of low Reynolds number aerodynamics [1–3] reveal new features
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of such flows that complicate their prediction compared with high Reynolds number
flows. Aerodynamics at moderate and low Reynolds numbers is less developed be-
cause of a unique physical difficulty: such flows are often dominated by the effects of
flow separation. The flow separation can greatly influence lift and drag, and thus flight
stability of UAV’s, efficiency of wind turbines, and unsteadiness in turbine flows, which is
instrumental in predicting high cycle fatigue (HCF) for turbomachinery components. In
order to produce efficient designs or control schemes to reduce separation effects we
need prediction tools for such flows. However, while there are experimental data on both
the time-averaged lift and drag forces and the instantaneous flow fields over wings, the
agreement between different experiments is often poor, indicating that the separation
process can be sensitive to details of experimental setups.

The physical origin of the observed behavior is qualitatively well understood: it is
caused by a sudden appearance of the laminar separation bubble that changes the
flow pattern around a wing and thus its properties. The main features of the laminar
separation bubble are illustrated in Fig. 1 taken from [4]. The attached laminar boundary
layer developing on a wing is subjected to an adverse pressure gradient due to the wing
curvature that causes it to separate. Immediately behind the separation point there is
an effectively stagnant flow region, the so-called "dead air" region, followed by a reverse
flow vortex. The interface between the separated flow moving away from the wing and
the recirculating flow in the vicinity of the wing results in a shear layer with an inflec-
tional mean velocity profile. This shear layer experiences Kelvin-Helmholtz instabilities,
developing into turbulence, after generating first characteristic spanwise vortices. Fur-
ther downstream the separated turbulent flow reattaches and gradually evolves into the
classical turbulent boundary layer. The above picture emerges from numerous experi-
mental investigations, e.g., [1–3], as well as from direct numerical simulations (DNS)
results [4–9]. Note that despite the fact that the term "laminar" is used, the actual flow
is a mixture of regions where the flow is laminar, transitional, non-equilibrium turbulent
boundary layer, and an equilibrium turbulent boundary layer.

The agreement between experiments and computations is even harder to find, in-
dicating potential difficulties in developing separation prediction tools. This is because
the separation process, especially driven by an adverse pressure gradient as opposed
to geometry, is essentially non-equilibrium and involves subtle interactions between vis-
cous, advective, and pressure effects that can be captured only by the full Navier-Stokes
equations. Indeed, at present the reliable numerical results for such flows have to be
obtained using DNS. However, such DNS require substantial computational resources,
long wall-clock runs and long analysis times, e.g., [6] used over 170 million grid points
for a relatively simple 3-D configuration. Such numerical simulations of the full Navier-
Stokes equations are not feasible if a number of configurations and angles of attack are
to be investigated. Therefore, other simulation options must be considered. One option
is to employ Reynolds Averaged Navier-Stokes (RANS) models, modified to account
for the reduction of the eddy viscosity around the separation region. This approach is
commonly used and optimized for high Reynolds number turbulent flows, but not as
useful for the separated flows of interest. Another option is to employ Large Eddy Sim-
ulation (LES) techniques. For instance, Yang and Voke [10] reported LES results ob-
tained with the dynamic Smagorinsky model in a good agreement with experiments for
boundary-layer separation and transition caused by surface curvature at Re = 3,450. Yet
even for this relatively low Reynolds number, the critical issues in getting the agreement
was good numerical resolution (472x72x64 mesh points) and a high order numerical



Numerical Modeling of 3-D Separated Flows 179

FIGURE 1. Features of a laminar separation bubble flow (after [4]).

method, requirements difficult to satisfy in simulations of practical flows often performed
with low order finite difference or finite volume methods (e.g., commercial codes). Sim-
ilarly, Eisenbach and Friedrich [11] performed LES of flow separation on an airfoil at
high angle of attack at Re = 105 using Cartesian grids. This case also required very high
resolutions between 50 and 100 million mesh points. A rare example of low resolution
LES is given by Almutairi et al. [20]. In that study the results for a laminar separation
bubble over an airfoil are in good agreement with [6,7] at 4.5% of DNS resolution.

In the present report we study the same configuration: i.e., a separation problem
for a flow around a wing/blade geometry at moderate Reynolds numbers using LES.
The specific geometrical setting is that of a 3-D airfoil at incidence for which detailed
DNS results were obtained in [6, 7]. The goal of the project is to reproduce the laminar
separation bubble on a NACA-0012 airfoil at Rec = 5 × 104 at 5 degree of incidence
with resolution reduced drastically from that used in DNS and typical LES performed
for this problem. The reduction target is a factor of 100. To simulate this case the code
INCA developed at TUM that uses immersed boundary method (IB) has been employed.
Several simulations in 2-D and 3-D have been performed with varying resolution. In the
attempt to match the DNS results for the 2-D case, simulations with 5 different numerical
schemes have been done.

2. Numerical method
2.1. Governing equations

The numerical code solves the compressible three-dimensional Navier-Stokes equa-
tions in conservative form

∫
V
(∂U

∂t
+∇ ⋅ [F (U) +G (U)])dV = 0 . (2.1)
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The solution vector U contains the volume-averaged density ρ, momentum ρui and
total energy ρE. The inviscid flux tensor F is defined as

Fi (U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρui

uiρu1 + δi1p

uiρu2 + δi2p

uiρu3 + δi3p

uiρE + uip

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.2)

and G is the viscous flux tensor

Gi (U) = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
τi1

τi2

τi3

ukτik − qi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3)

where τij is the viscous stress tensor

τij = µ [( ∂ui

∂xj

+ ∂uj

∂xi

) − 2

3
δij

∂uk

∂xk

] (2.4)

and qi is the heat flux

qi = −k ∂T

∂xi

(2.5)

where µ is the dynamic viscosity, k is the thermal conductivity, T is the temperature. We
assume the fluid to be a perfect gas with the Prandtl number of Pr = 0.72 and a specific
heats’ ratio of γ = cp/cv = 1.4.

The above equations are nondimensionalized using the cord length c and the free
stream values: the velocity U0, the density ρ0, and the temperature T0. The pressure
is nondimensionalized using ρ0U

2
0 . The governing nondimensional flow parameters are

the Reynolds number Re = ρ0U0c/µ0 and the Mach number Ma = U0/a0, where a0 is the
speed of sound based on T0 and µ0 is the viscosity in the free stream. Thermodynamic
quantities are related through the nondimensional ideal-gas equation of state

p = 1

γMa2
ρT. (2.6)

The nondimensional total energy per unit volume is

ρE = 1

γ − 1
p + 1

2
ρuiui . (2.7)

A power law is assumed for the temperature dependence of viscosity

µ = 1

Re
T 0.75 (2.8)

and the thermal conductivity is

k = µ

(γ − 1)Ma2Pr
. (2.9)

2.2. Grid and boundary conditions

The generation of suitable grids for LES of complex flows can be time-consuming and
difficult. Contradictory requirements, such as adequate local resolution and minimum
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number of grid points, can deteriorate the grid quality and adversely affect accuracy and
numerical convergence properties. We use Cartesian grids, which facilitate automatic
grid generation and adaptive local grid refinement by dyadic sub-partitioning. Cartesian
grids also imply fewer computational operations per grid point than body-fitted or un-
structured grids. On the other hand, geometric boundaries do not necessarily coincide
with grid lines, so that boundary conditions have to be applied at the subcell level.

We use a conservative Immersed Boundary (IB) method for representing sharp inter-
faces between a fluid and a rigid body on Cartesian grids, see Refs. [12,13]. A level-set
technique is used for describing the interface geometry. The level-set function is the
signed distance between each point in the computational domain and the immersed
interface, which is positive within and negative outside of the fluid domain. The zero
contour is the interface between the fluid and the obstacle. The intersection of the ob-
stacle with the Cartesian grid produces a set of cells that are cut by the interface. The
underlying finite-volume discretization is modified locally in these cut cells in such a
way that it accounts only for the fluidic part of a cell. Required interface normals, face
apertures and fluid-volume fractions of cut cells can be computed efficiently from the
level-set function. The viscous stresses at the fluid-solid interface are approximated by
linear differencing schemes. The interface pressure is obtained by solving the one-sided
(symmetric) Riemann problem in the interface-normal direction.

As we operate on fluxes only, this cut-cell finite-volume method ensures mass, mo-
mentum, and energy conservation. Discrete conservation and a sharp representation
of the fluid-solid interface render our method particularly suitable for LES of turbulent
flows.

Characteristic boundary conditions of Poinsot and Lele [14] are applied at the far-
field domain boundaries. At the downstream exit boundary, which will be subject to the
passage of nonlinear fluid structures, a low value for the reflection parameter has been
set. These boundary conditions avoid unphysical reflections that could strongly influence
the flow in the vicinity of the airfoil.

2.3. Finite volume discretization

The Navier-Stokes equations are numerically solved on a grid that is too coarse to
resolve all scales representing the turbulent fluid motion. The unavailable small-scale
information, however, is crucial for the proper evolution of large-scale structures in the
flow. Therefore, the effect on the resolved scales of their nonlinear interactions with the
unresolved subgrid-scales (SGS) has to be represented by a SGS turbulence model.

Subgrid-scale models generally operate on flow scales that are marginally resolved
by the underlying discretization scheme, i.e., the truncation error of common approxima-
tions for the convective terms can out-weigh the effect of even physically sound models.
One can exploit this link by developing discretization methods where the truncation er-
ror itself functions as implicit SGS model. Approaches where SGS model and numerical
discretization are merged are called implicit LES; refer to Ref. [15,16] for an introduction.

Representing a full merger of discretization and SGS model, the Adaptive Local De-
convolution Method (ALDM) has shown to be a reliable, accurate, and efficient method
for implicit LES of Navier-Stokes turbulence [17, 18]. The implicit SGS model provided
by this discretization can be interpreted as a combination of eddy-viscosity and scale
similarity modeling. Model parameters were determined by a spectral-space analysis of
the effective eddy viscosity in isotropic turbulence in the Reynolds number’s infinite limit
by constraining the numerical dissipation to the physical SGS dissipation obtained from
the analysis of nonlinear interactions in turbulence.
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ALDM is used for discretizing the hyperbolic flux, whose discretization causes the
SGS effects of interest, whereas standard second order centered differences are used
for discretizing the viscous flux.

For comparative purposes other classic discretization schemes for the inviscid fluxes
have been used in under-resolved DNS mode, i.e., without any explicit or implicit LES
model. The other schemes used are 3rd and 5th order WENO with HLLC fluxes and
4th and 6th order central difference methods. These schemes were used because they
are known to be either more dissipative (WENO schemes) or less dissipative (central
difference schemes) than the ALDM discretization.

For time integration, the conditionally stable 3rd order Runge-Kutta method of Got-
tlieb and Shu [19] is used. This time-discretization scheme is total-variation diminishing
(TVD) for CFL ≤ 1, provided the underlying spatial discretization is TVD, whereas the
linear stability bound is larger. As cut-cell methods can generate cells with a very small
fluid volume fraction, a special treatment of such cells is necessary when excessively
small time steps according to the CFL stability criterion are to be avoided. For increas-
ing the computational efficiency, we use a conservative mixing procedure, where the
conserved quantities in small cells are mixed with larger neighbors [12,13]. During sim-
ulations, the time step size is adjusted dynamically according to the condition CFL = 0.5
based on the full cell size.

3. Results
3.1. Computational Setup

The geometry of the NACA-0012 airfoil at 5 degree of incidence and the computational
grid are shown in Fig. 2. Several two dimensional Cartesian grids have been generated.
Here we present only two different resolutions (coarsest and finest cases which will be
referred to as "coarse" and "fine" grid). The coarse grid has around 240,000 cells and the
fine grid has around 1.6 million cells. For comparison, the baseline 2-D case of Jones
et al. [6] used 1.6 million grid points. It should be noted that for the fine grid, even
though the total number of cells is the same as in Jones et al. , the actual distribution
of cells/points in the domain is quite different due to the distinct numerical approaches,
i.e., Cartesian grid with IB versus generalized curvilinear coordinates.

To create 3-D grids the 2-D grids are extended in the spanwise direction using 32
points within the boundary layer, close to the airfoil and in the wake, reducing up to 4
points away from the airfoil where the flow is laminar to reduce the computational effort.
The 3-D coarse grid has around 7.2 million cells and the fine grid has around 46.2 million
cells. For comparison, the 3-D grid of Jones et al. [6] used 170.7 million grid points.

For each run, starting from a converged solution, the flow has been simulated for
around 12 time units, c/U0, where c is the airfoil cord length and U0 the free stream ve-
locity. The equations of motion have been nondimensionalized using c and U0, therefore
in the results shown c = 1 and U0 = 1. Because of the low Mach number, the time step
in the coarse grid had to be set to a low value of ∆t = 0.2 × 10−4, which is a factor of 5
smaller than used by Jones et al. [6]. An even smaller time step is used for the fine grid.

3.2. Numerical Simulations

The project had been initiated during the first summer program [21] by performing 2-D
low resolution simulations. During the current summer program, after several attempts
to get a good agreement with the reference DNS, the original goal of using 1% of DNS
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FIGURE 2. Grid around the airfoil, only every 5th line is shown (coarse grid).

resolution was abandoned and several runs with increasing resolution were performed.
The challenges of obtaining good results at very low resolution come partially from the
impossibility of stretching a cartesian grid at a curved IB. Several 2-D runs with the
ALDM scheme and with increasing resolution have been made. It should be noted that,
by design, ALDM provides a consistent SGS turbulence model for 3-D turbulence. In
two dimensional or laminar flows ALDM does not provide a turbulence model but merely
acts as a slightly dissipative, 2nd order accurate centered discretization. Therefore, the
2-D results presented should be considered as under-resolved DNS results, while the
3-D results should be considered as an implicit LES. 3-D simulations for the coarse and
fine grid have been carried out only with the ALDM scheme.

Additionally, 2-D simulations with the fine grid and four different discretization schemes
have been performed, in particular we have chosen two schemes that are more dissi-
pative than ALDM (3rd and 5th order WENO schemes) and two that are less dissipative
(4th and 6th order central difference schemes). All the simulations presented here are
summarized in Tab. 1 for the 2-D simulations and Tab. 2 for the 3-D simulations

3.3. Evaluation Metrics

As a qualitative comparison the instantaneous spanwise vorticity field of the simulated
flow is shown in Fig. 3 which can be compared with the results of Jones et al. [6]. The
present 2-D and 3-D simulations capture well qualitative features observed in high res-
olution DNS, including the presence of a separated flow. In particular the characteristics
of the laminar separation bubble described in Sec. 1 can be observed: laminar boundary
layer, separated shear layer, break up of the shear layer, transition to turbulence, and
turbulent reattachment. Only the vorticity fields for the coarse grid cases with the ALDM
scheme are shown because all the other simulations look qualitatively similar.

As a principal quantitative metrics to evaluate our simulations we use quantities that
are of paramount importance for the design of wings or blades: pressure coefficient, Cp =
(p − P )/1

2
ρU2, and skin friction coefficient, Cf = τw/12ρU2 (where P is the free stream

pressure, U is the free stream velocity, p is the pressure at the surface and τw is the wall
shear stress). The pressure and friction coefficients from our simulations are compared
with the corresponding data of Jones et al. [6] for their high resolution DNS case.
All quantities are averaged in time for 10 time units. Also, for a numerical comparison
of the location of the separation point xs, the reattachment point xp, and the bubble
length lb one should refer to Tab. 1 and Tab. 2 for the 2-D and 3-D cases, respectively.
This quantitative information about the laminar separation bubble is extracted from the
analysis of the skin friction coefficient plots (see Fig. 4(b) and Fig. 6(b)). In particular,
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(a) Isocontours of vorticity for 2-D coarse grid simulation.

(b) Isocontours of vorticity for 3-D coarse grid simulation.

FIGURE 3. The spanwise vorticity field.

at the suction side the point where the skin friction becomes negative defines xs and
where the skin friction becomes positive again defines xr.

3.3.1. 2-D simulations

The comparison for the pressure coefficient (Fig. 4(a)) is quite good for all cases, es-
pecially on the pressure side of the airfoil; this is expected since on the pressure side
the flow is fully laminar. The prediction of Cp on the suction side is not fully satisfactory
for the cases with the ALDM scheme: the plateau formed due to the presence of the
laminar separation bubble is captured, but the secondary peak at the end of the plateau
is not. Substantially increasing the resolution, up to almost DNS resolution, improves the
results. However it is not sufficient to reach perfect agreement with the DNS reference.
The same trend can be observed looking at the skin friction coefficient (see Fig. 4(b)).
There is overall agreement with the DNS reference, especially for the pressure side.
Looking at the suction side all simulations predict accurately both separation and reat-
tachment points. For the cases run with the ALDM scheme the magnitude and features
of the secondary peak are not correctly captured even with the fine grid.

After a preliminary 3-D run (coarse grid with ALDM, see Fig. 6) it was noticed that
the results were closer to the forced case of Jones et al. than to the unforced one. The
forcing was added by Jones et al. to promote faster transition to turbulence in the 3-D
simulations. This observation suggested that perhaps the IB procedure was generating
some noise at the airfoil boundary and that these oscillations were acting as a forcing
term promoting early transition to turbulence. In order to explore this idea additional runs
with the fine grid were performed with schemes that are known to be more dissipative
than ALDM, hoping that the additional numerical dissipation would damp out the oscil-
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(a) Pressure coefficient comparison.
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(b) Friction coefficient comparison.

FIGURE 4. 2-D Pressure and friction coefficients at the wall. DNS of Jones et al. [6] (black dots),
5th order WENO scheme with fine grid (solid red line), ALDM with fine grid (dashed dotted blue
line), and ALDM with coarse grid (dashed green line).

lations originating from the IB method. The first run was made with a 3rd order WENO
scheme. This brought an improvement in the results, notably the secondary peak after
the bubble was now resolved, but the added numerical dissipation was excessive re-
sulting in the shorter bubble length. The second run with a 5th order WENO scheme
(denoted as WENO5 in the following) provided the right amount of numerical dissipation
and all the features of the laminar separation bubble were fully captured as can be seen
in Fig. 4.

In an attempt to further clarify the role of numerical dissipation in the difference be-
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FIGURE 5. Results of the dynamic mode decomposition for WENO5 and ALDM simulations.

tween the results obtained with WENO5 and ALDM, two additional runs with the fine
grid were made. This time 4th and 6th order central difference schemes were used.
Both runs went unstable after a little more than one time unit, suggesting that these are
under-resolved DNS.

Flow visualizations show an apparently identical flow evolution for the WENO5 and
ALDM simulations. In order to identify and isolate the differences that lead to the dis-
crepancy in the time averaged Cf and Cp distributions, we performed a Dynamic Mode
Decomposition (DMD) for a sub-domain 0.3 ≤ x ≤ 0.85 that fully encloses the region
where flow-separation and vortex shedding takes place. DMD is a technique that allows
for a modal analysis of any data sequence [22]. It is used here to identify modes and
frequencies that express the dominant dynamic behavior captured in the simulated time
series. Figure 5 shows the resulting frequencies and corresponding amplitudes. The
difference between the two simulations is striking. For the WENO5 simulation, the dy-
namic behavior is fully governed by a single low-frequency dynamic mode with Strouhal
number St = 3.36 and its higher harmonics. For the ALDM time series, DMD identifies
two dominant low-frequency modes with St = 3.0 and St = 2.78, and a broad spectrum
of less energetic modes that also contribute to the flow evolution. All relevant dynamic
modes are very well resolved on the computational grid and have reached a saturated
state.

We conclude that the pronounced secondary peaks of Cf and Cp in the WENO5
results are due to vortex shedding taking place at a constant streamwise coordinate and
with constant frequency, which results in a single dynamic mode and its harmonics. The
ALDM solution on the other hand is essentially dominated by two dynamic modes with
slightly different frequencies. Though the shedded vortices have the same intensity as
in the WENO5 run, this leads to a slight upstream-downstream oscillation of the vortex
shedding location and a more smeared Cf and Cp distribution in the temporal average.
We were unable to clearly identify the origin of the observed discrepancies between
these two cases. Possible explanations are that the additional dynamic modes result
from flow instabilities with small growth rates or from disturbances due to the geometry
representation, which are suppressed if a more dissipative numerical method is used.
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(a) Pressure coefficient comparison.
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(b) Friction coefficient comparison.

FIGURE 6. 3-D Pressure and friction coefficients at the wall. DNS of Jones et al. [6] (black dots),
DNS of Jones et al. [6] with forcing (red triangles), ALDM with fine grid (dashed dotted blue line),
and ALDM with coarse grid (dashed green line).

3.3.2. 3-D simulations

Only two 3-D simulations have been performed. Both 3-D simulations were performed
with ALDM. The best agreement for the 2-D simulations was obtained with the 5th order
WENO scheme, but it was decided to not perform a 3-D simulation with this scheme
because it is known to have high levels of the numerical dissipation [23]. The high nu-
merical dissipation would act as an uncontrolled implicit SGS model in case the simu-
lation were to be performed without any explicit SGS model. On the other hand, if the
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Simulation Model N × 10
6 xs xr lb

Jones et al. [6] DNS 1.6 0.151 0.582 0.431

coarse ALDM 0.24 0.177 0.583 0.406
fine ALDM 1.6 0.164 0.585 0.421
fine UDNS (WENO 3) 1.6 0.129 0.562 0.433
fine UDNS (WENO 5) 1.6 0.155 0.586 0.431
fine UDNS (CD 4) 1.6 - - -
fine UDNS (CD 6) 1.6 - - -

TABLE 1. Summary of 2-D time averaged laminar separation bubble characteristics. N is the
number of grid points, xs the separation point, xr the reattachment point and lb the length of the
bubble.

Simulation Model N × 10
6 xs xr lb

Jones et al. [6] DNS 170.7 0.099 0.607 0.508
Jones et al. [6] forced DNS 170.7 0.128 0.500 0.372
Almutairi et al. [20] MTS 7.6 0.114 0.604 0.490

coarse ALDM 7.2 0.125 0.462 0.337
fine ALDM 46.2 0.138 0.549 0.411

TABLE 2. Summary of 3-D time averaged laminar separation bubble characteristics. N is the
number of grid points, xs the separation point, xr the reattachment point and lb the length of the
bubble.

simulation were to be performed with an explicit SGS model the unknown numerical
dissipation would contaminate the effects of the model [24].

For 3-D cases the pressure and the friction coefficients from both the forced and
unforced DNS cases of Jones et al. are included for comparisons. The comparison for
the pressure coefficient (Fig. 6(a)) is fairly good overall, although the bubble is visibly
shorter compared to the unforced case for both grids. The more sensitive is the skin
friction comparison shown in Fig. 6(b). Similarly to the 2-D case the pressure side is well
reproduced. On the suction side, the separation point is fairly well captured, although
for both grids it agrees better with the forced case of Jones et al. . The reattachment
point varies substantially between the coarse and fine grid cases and the bubble in both
cases is significantly shorter than in the benchmark DNS. We may speculate that the
noise from the immersed boundary procedure promotes early transition to turbulence
and consequently early reattachment. With the finer grid the forcing is weaker and the
IB solution approximates better the reference DNS data.

4. Conclusions
We have initiated a project to apply and evaluate LES techniques to simulate sepa-

rated flows with resolution reduced drastically from that used in DNS and typical LES
performed for such problems, the reduction target being a factor of at least 100. As
the first step toward this goal we have adapted the numerical code INCA developed at
TUM that uses immersed boundary method to simulate a flow around a NACA-0012
airfoil for which a detailed DNS database is available [6]. 2-D and 3-D simulations at
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low resolution, around the reduction target have been performed, and at this resolution
our simulations reproduce qualitative features of the flow such as the structure of the
vorticity field and the presence of a separation. We also obtain a fairly good quantitative
prediction for the pressure coefficient and the location of the primary separation point.

For a better quantitative agreement a DNS-like resolution is needed and any com-
putational savings with respect to actual DNS can only be obtained by decreasing the
resolution in the homogenous (spanwise) direction. The reattachment point in the 3-D
case is very sensitive to the resolution. We speculate that this behavior can be attributed
to the noise coming from the IB procedure rather than from not having the correct SGS
dissipation. This is supported by the results of 2-D simulations, where a dissipative code
provided an excellent agreement with the DNS benchmark. A DMD analysis revealed
that the flow dynamics predicted by the dissipative method is fully captured with a single
dynamic mode and its harmonics. Hence, vortex shedding takes place at a constant
streamwise coordinate, leading to pronounced secondary peaks of Cf and Cp in agree-
ment with the DNS. With a less dissipative method, however, the vortex shedding is
essentially dominated by two different low-frequency dynamic modes, which leads to a
slight upstream-downstream oscillation of the vortex shedding location and a smeared
Cf and Cp distribution in the temporal average.

A separate conclusion regarding LES for such problems in the framework of IB meth-
ods is that because of difficulties in resolving geometry of a curved wall with a Cartesian
grid the IB methods are more appropriate for a high resolution/fidelity LES rather than
for very coarse LES which can take an advantage of high-aspect-ratio body fitted grids
to resolve the wall region.

Acknowledgments
Two co-authors (GC and JAD) gratefully acknowledge support for this project pro-

vided through the second SFB/TRR 40 Summer Program and the hospitality of faculty
and staff of Lehrstuhl für Aerodynamik und Strömungsmechanik, Technische Universität
München. The first two co-authors have been also supported by a NSF grant (CBET-
1233160). Finally we would like to thank Dr. Sandham for providing the DNS results.

References
[1] HU, H., YANG, Z. AND IGARASHI, H. (2007). Aerodynamic hysteresis of a low-
Reynolds-number airfoil. J. Aircraft, 44, 2083–2086.
[2] HAIN, R., KAEHLER, C. J. AND RADESPIEL, R. (2000). Dynamics of laminar
separation bubbles at low-Reynolds-number aerofoils. J. Fluid Mech., 630, 129–153.
[3] SPEDDING, G. R. AND MCARTHUR, J. (2010). Span efficiencies of wings at low
Reynolds numbers. J. Aircraft, 47, 120–128.
[4] LIN, J. C. M. AND PAULEY, L. L. (1996). Low-Reynolds-number separation on an
airfoil. AIAA J., 34, 1570–1577.
[5] ALAM, M. AND SANDHAM, N. D. (2000). Direct numerical simulation of ‘short’
laminar separation bubbles with turbulent reattachment. J. Fluid Mech., 410, 1–28.
[6] JONES, L. E., SANDBERG, R. D. AND SANDHAM, N. D. (2008). Direct numerical
simulations of forced and unforced separation bubbles on an airfoil of incidence. J.
Fluid Mech., 602, 175–207.



190 Castiglioni, Domaradzki, Pasquariello, Hickel & Grilli

[7] JONES, L. E., SANDBERG, R. D. AND SANDHAM, N. D. (2010). Stability and re-
ceptivity characteristics of a laminar separation bubble on an airfoil. J. Fluid Mech.,
648, 257–296.
[8] SPALART, P. R. AND STRELETS, M. K. (2000). Mechanisms of transition and heat
transfer in a separation bubble. J. Fluid Mech., 403, 329–349.
[9] WILSON, P. G. AND PAULEY, L. L. (1998). Two- and three-dimensional large-eddy
simulations of a transitional separation bubble. Phys. Fluids, 10, 2932–2940.

[10] YANG, Z. AND VOKE, P. R. (2001). Large-eddy simulation of boundary-layer sep-
aration and transition at a change of surface curvature. J. Fluid Mech., 439, 305–
333.

[11] EISENBACH, S. AND FRIEDRICH, R. (2008). Large-eddy simulation of flow sep-
aration on an airfoil at a high angle of attack and Re = 105 using Cartesian grids.
Theor. Comput. Fluid Dyn., 22, 213–225.

[12] MEYER, M., DEVESA, A., HICKEL, S., HU, X. Y. AND ADAMS, N. A. (2010). A
conservative immersed interface method for large-eddy simulation of incompressible
flows. J. Comput. Phys., 229, 6300–6317.

[13] GRILLI, M., HICKEL, S., HU, X. Y. AND ADAMS, N. A. (2009). Conservative
immersed boundary method for compressible flows. Academy Colloquium on Im-
mersed boundary methods: current status and future research directions, Amster-
dam, The Netherlands.

[14] POINSOT, T. J. AND LELE, S. K. (1992). Boundary Conditions for Direct Simula-
tions of Compressible Viscous Flows. J. Comput. Phys., 101, 104–129.

[15] GRINSTEIN, F., MARGOLIN, L. AND RIDER, W. (2007). Implicit Large Eddy Simu-
lation: Computing Turbulent Flow Dynamics, Cambridge, UK: Cambridge University
Press.

[16] GARNIER, E., ADAMS, N. AND SAGAUT, P. (2009). Large eddy simulation for
compressible flows, Springer.

[17] HICKEL, S., ADAMS, N. A. AND DOMARADZKI, J. A. (2006). An adaptive local
deconvolution method for implicit LES. J. of Comput. Phys. 213, 413–436.

[18] HICKEL, S. AND LARSSON, J. (2008). An adaptive local deconvolution model
for compressible turbulence. Proceedings of the 2008 Summer Program, Center for
Turbulence Research, Stanford University, 85–96.

[19] GOTTLIEB, S. AND SHU C.-W. (1998). Total variation diminishing Runge-Kutta
schemes. Math. Comput., 67, 73–85.

[20] ALMUTAIRI, J. H., JONES, L. E. AND SANDHAM, N. D (2010). Intermittent burst-
ing of a laminar separation bubble on an airfoil. AIAA J., 48, 414–426.

[21] CASTIGLIONI, G., DOMARADZKI, J. A., GRILLI, M. AND HICKEL, S. (2011). Nu-
merical modeling of separated flows at moderate Reynolds numbers appropriate
for turbine blades and unmanned aero vehicles. SFB/TRR 40 – Proceedings of the
Summer Program 2011, 67–76

[22] SCHMID, P. J. (2010). Dynamic mode decomposition of numerical and experi-
mental data. J. Fluid Mech., 656, 5–28.

[23] TAIEB, D., RIBERT, G. AND HADJADJ, A. (2010). Numerical simulations of shock
focusing over concave surfaces. AIAA J., 48, 1739–1747.

[24] CADIEUX, F., DOMARADZKI, J. A., SAYADI, T. AND BOSE, T. (2013). DNS and
LES of Laminar Separation Bubbles at Moderate Reynolds Numbers. ASME J. Flu-
ids Eng., in press.




