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The present study focuses on the analysis of the nonlinear acoustic scattering at an
orifice in a duct using numerical simulation and system identification methods. At first,
Large Eddy Simulation of a turbulent compressible flow with superimposed acoustic per-
turbations is performed. Subsequently the acoustic perturbation time series, extracted
from the previous simulation, are post-processed with system identification techniques
in order to identify the acoustic scattering matrix and to construct linear/nonlinear dy-
namic models of the system analyzed. A linear dynamic model is obtained with the
classic correlation analysis and has been used as reference to point out the effect of
nonlinearities on the acoustic scattering. Nonlinear dynamic models are obtained by
merging acoustic input-output data sets for either a range of amplitudes when the forc-
ing frequency is fixed or for a range of frequency when the superimposed fluctuating
amplitude is fixed. A first estimation of the coefficients of the acoustic scattering matrix
in the nonlinear regime is reported.

1. Introduction
Thermoacoustic instabilities in rocket engines can cause mechanical damages and

decrease the performance of the combustion chamber. The complicated interaction be-
tween heat release and chamber acoustics determines the stability limits of self excited
oscillations, the response to finite amplitude perturbations, as well as final amplitude
of the pressure oscillation. To increase the losses of oscillation energy and thus obtain
more stable operations, acoustic resonators are often attached to the chambers. The
dissipation of the acoustic energy is achieved through conversion of acoustic to vortical
energy at the resonator mouths and viscous losses along the cavity walls. Generally
for the estimation of the acoustic losses, correlations based on the measurements are
used. Further progress in passive control of thermoacoustic oscillations requires im-
proved understanding of the physical mechanisms of acoustic damping and accurate
methods to characterize quantitatively its nonlinear aspects [1–3].

The present study has been carried out within the context of the summer program
SFB/TRR 40 with the financial support of the German Research Foundation (Deutsche
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Forschungsgemeinschaft – DFG). The work aims to investigate nonlinearities of the
acoustic energy dissipation at a duct discontinuity, represented by an orifice. This con-
figuration is simpler than Helmholtz resonators, as typically found in rocket engines, but
the flow physics and acoustics share important similarities.

The acoustics of the orifice configuration will be characterized through the acoustic
scattering matrix of the system. The scattering matrix is a passive element that contains
reflection, transmission and dissipation coefficients of a given acoustic perturbation and
can be obtained analytically, numerically or experimentally. Analytical methods are re-
stricted to very simple configurations and most of them do not take into account possible
coupling between turbulence and acoustic fluctuations. To consider this coupling, exper-
imental analysis are generally considered; nevertheless typical experimental set-ups are
too expensive, especially for preliminary analysis. Numerical investigations, on the con-
trary, are suitable to study systems with the aforementioned interaction with affordable
costs. All these numerical methods are based on the numerical solution of the Navier-
Stokes Equations of different levels of approximation. Methods based on Linearized-
Euler equations LEEs [4], or Linearized-Navier-Stokes equations LNSEs, [5–7] allow
us to compute the acoustic scattering matrix that takes into account the interaction be-
tween the mean turbulent flow field and the noise propagation. However these methods
are based on a linearization around a mean flow and do not consider the effect of hy-
drodynamic modes, which may modify the mean flow field, the scattering of sound into
turbulence (also called backscattering) and possible nonlinearities.

To address these problems, Polifke and co-workers have developed the method of
CFD/SI [8–12] where time series data from a CFD simulation excited by a broadband
acoustic signal are post-processed with system identification (SI) techniques to deter-
mine the acoustic scattering matrix of the system.

The latter developments on this approach consider a CFD simulation based on Large
Eddy Simulation (LES) of compressible flow, allows a reliable numerical computation of
turbulent flow field and their interaction with acoustic pressure fluctuations. The LES/SI
procedure has been applied to analyse the scattering behaviour of different pipe system
configurations, e.g. sudden area expansion [13], T-junctions [14] and cylindrical orifice
[15]. Such configurations were characterized by an important interaction between shear
layers and the surrounding acoustic field. Enhancement or damping mechanisms of
acoustic waves was studied. The same methodology has been applied to the analysis
of thermo-acoustic instabilities and to the identification of the flame transfer function
(FTF) [16–20]. A correct computation of the turbulent flow field and its interaction with
acoustic pressure fluctuations through LES requires high resolution meshes, that may
take into account the smallest turbulent structure of the flow field.

In this study a dynamic model characterizing the acoustic scattering at an orifice is
obtained combining LES with system identification techniques. The use of nonlinear
identification methods is explored to obtain a nonlinear dynamic model, which can be
used in further analysis of thermoacoustic instabilities (e.g. in the form of a nonlinear
boundary impedance). Parametric and nonparametric system identification methodolo-
gies are explored [21]. Nonparametric system identification techniques let to identify
dynamic models of the system without defining an a priori model structure and are use-
ful for preliminary analysis on the system dynamic. Parametric models on the other hand
require the definition of a given model structure, but the parameter to identify are less
w.r.t. the nonparametric ones. Classical techniques, in linear acoustic, to assess the
acoustic scattering of a given configuration consist in imposing an acoustic perturbation
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to the system and post-process the data series with System identification techniques.
Different approaches may be possible. A classical method consist in perturbing the sys-
tem with sinusoidal excitations at a given frequency and amplitude according to the two
source location method [22] and identify the system dynamic in frequency domain for
different discrete frequencies. The approach of Polifke and co-workers is based on the
other hand on a single broadband excitation which is afterwards post-processed with
nonparametric or parametric time domain system identification methods.

The proposed project aimed to analyse the system considering nonlinear identifica-
tions of the scattering of the acoustic at the orifice for both sinusoidal and broadband
excitation signals. During the time of the summer school program we had to limit our
perspective, because of high computational efforts required. However a first estima-
tion of the nonlinear acoustic scattering has been studied for discrete frequencies and
has been compared with the linear conditions. Parametric and nonparametric system
identification in nonlinear regime techniques have been applied for different sinusoidal
excitation signals. A first estimation of the nonlinear dynamics of the system has been
therefore assessed.

In Sec. (2) the geometry and the flow conditions are reported. In Sec. (3) the flow
simulation details are summarized. In Sec. (4), a brief review of the basic duct acoustic
notions is given. Then the LES-SI method is explained both in case of linear and non-
linear SI considered. In Sec. (6) the results of linear and nonlinear SI are reported and
discussed and a first estimation of the transmission and reflection coefficients of the
acoustic scattering matrix for different discrete frequencies and amplitudes is reported

2. Geometry and Flow Conditions
The configuration analyzed is a duct with diameter D in which an orifice of diameter

d and thickness t has been introduced. The length of the whole pipe L is divided by the
orifice in two sections of length Lu upstream and Ld downstream, see Fig. (1).

This configuration has been analyzed considering an air flow mean velocity Umean,
with constant outlet pressure p0 and constant Temperature T0. The geometrical and the
flow parameters are reported in Tab. (2).

3. Flow simulation
The turbulent flow inside the orifice under analysis has been simulated by means

of the solver AVBP, developed by CERFACS †. This code lets to perform a Large Eddy
Simulation (LES) of the three-dimensional compressible Navier-Stokes equations on un-
structured meshes. The large turbulent eddies are resolved, whereas the small scales
are modelled with a subgrid-scale model. In the present work the WALE (Wall Attached
Layer Eddy) subgrid–scale model developed by Nicoud and Ducros [23] is adopted.
The numerical discretization scheme adopted is the Lax-Wendroff method. The com-
putational grid consists of a hexahedral mesh used for both the linear and the nonlin-
ear analysis. The grid has been refined in proximity of the orifice to take into account
the most important turbulent structures that have a relevant influence on the acous-
tic dynamics of the present configuration. In axial direction a maximal grid spacing of
1.94 × 10−3 m has been considered in order to have at least 35 grid points per wave-
length for the maximum frequency considered (5000Hz in the linear analysis) In radial

† www.cerfacs.fr/4-26334-The-AVBP-code.php
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Symbol Value

f [500 750 1000 1250 1500 1750 2000 2250 2500 2750]Hz

A [40% 50% 60% 70% 80%] Umean

TABLE 1. Sinusoidal excitations Amplitudes and Frequencies.

direction the grid has been refined near the wall in order to have the first node at y+ = 50.
Therefore the turbulent boundary layer has been modeled with the use of the logarithmic
law of the wall. The smallest grid cell is 3.6 × 10−4 m, and the whole domain contains
1,72 millions of cells. The time step has been fixed to 3.65×10−7 s after some preliminary
computations, till the steady flow condition, in order to have a Courant-Friederichs-Lewy
number (CFL) of 0.7.

The inlet flow profile has been defined according to the power law:

U(r) = UCL (1 − r

R
)
1/7

(3.1)

where UCL is the centerline velocity.
In order to obtain reliable results with the SI methodologies used in this work, acoustic

waves must not be reflected at the boundaries of the computational domain. To achieve
this goal, a modified version of the Navier-Stokes Characteristic Boundary Conditions
(NSCBCs) [24] is adopted. This technique, developed by ( [25], [26]) is known as Plane
Wave Masking, and is suitable for low frequencies regimes, i.e. for frequencies at which
planar waves are still present. It should be noted that by means of the classical NSCBC
it is impossible to reach perfect non-reflecting acoustic conditions. Input acoustic fluctua-
tions will be imposed at the boundaries as planar wave perturbations, whose maximum
frequency (cut-off frequency) has been established to not excite the first (and higher)
transverse modes. In nonlinear acoustic regime it must be noticed that high harmon-
ics w.r.t the fundamental imposed may be present, so the input signal must be limited
further such that the higher harmonic does not excite the high order modes inside the
configuration. Indeed for a correct SI, it is necessary that only plane waves propagate
whereas high order modes should decay along the duct.

Two input signals are applied to the inlet and to the outlet of the computational domain.
The excitations are imposed as time derivatives of the ingoing characteristics wave am-
plitudes. The amplitude of the signals considered for the identification of the scattering
matrix in the linear regime is scaled to be 1.45% of the mean flow velocity Umean in order
to not generate nonlinear responses of the shear layers at the orifice. For the nonlinear
analysis, sinusoidal signal with larger amplitudes are considered. The different ampli-
tudes and frequencies of the sinusoidal signals considered are reported in Tab. (1). It
could be noticed that the amplitude adopted for the nonlinear system identification is
much higher w.r.t the one adopted for the linear case. Indeed it is necessary to use re-
ally high amplitudes in order to trigger nonlinearities in this kind of systems. The length
of the broadband signal considered is 0.26 s in order to have enough information from
the dataset to correctly identify the system.

The output acoustic waves have been extracted on the computational domain at the
boundaries by using a Characteristic Based Filter (CBF) [27]. Therefore 6 monitor planes
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Non−Reflecting Boundary Conditions

Wave Extraction by Characteristic Based Filter

p̂−u

p̂+

u p̂+

d

p̂−d

FIGURE 1. Numerical Plane wave extraction scheme.

Symbol Expression Value

D − 3 × 10
−2m

d − 1.5−2m

t − 5 × 10
−3m

L − 0.515m
Lu − 0.150m
Ld − 0.360m
Umean − 9m/s
M u/c0 2.6 × 10

−2

Re uD/ν ≃ 18000

p0 − 101325Pa
T0 − 298K

TABLE 2. Geometrical parameters and operating conditions.

have been positioned at the inlet and 10 monitor planes have been positioned at the
outlet of the duct. The distance between two successive monitors planes is 0.003 m.

4. Acoustic Scattering Matrix
The acoustic dynamics of plane acoustic waves for a given duct configuration, in linear

regime and below the cut-off frequency, can be described by the scattering matrix:

{ p̂+d
p̂−u
} = [ T + R−

R+ T − ]{
p̂+u
p̂−d
} (4.1)

where p̂i is the characteristic pressure wave amplitude of a given acoustic travelling
wave, T and R are respectively the transmission and the reflection coefficients. The
indexes u and d represent respectively the regions immediately upstream and down-
stream of a generic acoustic element, in our case an orifice, and "+" or "−" indicate the
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directions of propagation of the acoustic waves respectively downstream and upstream
w.r.t. the fluid flow.

The characteristic pressure wave amplitude can be related with the acoustic velocity
fluctuations u′ and with the acoustic pressure fluctuations p′ by means of:

p̂+ = 1

2
(p′ + ρcu′) (4.2)

p̂− = 1

2
(p′ − ρcu′) (4.3)

In the linear regime and below the cut-off frequency. the transmission and the reflec-
tion coefficients of Eq. (4.1) depend on the geometry, flow field, speed of sound and
frequency of the incoming waves. The linear regime is limited to really small acoustic
perturbations, therefore in the present study the amplitude of the acoustic perturba-
tions considered is large enough to generate nonlinear acoustic conditions as will be
explained in next section.

5. The LES-SI approach
In this section the numerical procedure is introduced. The LES-SI method is based

on two step analysis:
– an acoustically excited compressible flow simulation,
– an acoustic signal-response analysis with system identification techniques.
In within this study the acoustic analysis has been performed both in linear and non-

linear regimes.

5.1. System Identification

System identification methods can be utilized to construct dynamic models from the ob-
servation of input-output data sets that may be obtained from an experimental test rig
or numerical simulation [21, 28]. Identification methods can generally be classified as
parametric and non-parametric. In parametric approaches, the system is described with
differential/difference equations, and the aim is to find the parameters of this mathemat-
ical description. Well known non-parametric representations are the Impulse Response
(in the time domain) and the Frequency Response (in the frequency domain).

The input-output representation of a Linear, Time-Invariant, system in polynomial form
is expressed as [21] :

A(z)Q(t) = B(z)
F (z)u(t) +

C(z)
D(z)v(t), (5.1)

where A, B, C, D, F are polynomials in terms of z , u and Q are the input and output
of the system, and v is the error term. z is a shift operator namely,

zQ(t) = Q(t + 1). (5.2)

Here, Q(t+1) is a shorthand notation for Q(t+∆t), for the time step ∆t. This operator
simply shifts one step ahead value of the input or output to the current time. The past
inputs (u(t− 1), ..., u(t−Nu)) and outputs (Q(t− 1), ...,Q(t−NQ)) are called the regres-
sors. Depending on the polynomials used, different model structures appear [21]:
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– FIR (Finite Impulse Response), A = C =D = F = 1
This is the simplest model structure to be considered. The past inputs are used as
regressors. The structure results in a linear least square problem for minimizing the
cost function (e.g. Euclidean norm of the residual between the actual and the estimated
output). It requires many regressors and the convergence rate is slow.

– ARX (Auto Regressive with eXogenous input), C =D = F = 1
This model structure uses the past inputs and past outputs as regressors. This again
results in linear least square description where the cost function needs to be minimized.

– ARMAX (Auto Regressive Moving Average with eXogenous input): D = F = 1
– OE (Output Error): A = C =D = 1

The output of the system is the system response to a given input corrupted by white
noise.

In the identification, a model structure is selected and the number of past inputs and
outputs are specified. A criterion to minimize the difference between the actual output
and output from identification are specified in order to get the parameters of the model
structures. In an equation error/output error type modeling approach, this criterion re-
sults in a linear/nonlinear least square fit. In the identification, a model structure is se-
lected and the number of past inputs and outputs are specified. Identification methods
have the following procedures in common [21,28,29]:

– An appropriate choice of the input signal: The system is excited with a proper
signal for the excitation of all relevant modes of interest. Generally, broadband forcing,
chirp signals or pseudo random binary sequences, which have white noise characteris-
tics, are used to excite the system for a wide range of frequencies.

– Model structure selection: In case of parametric nonlinear system identification,
equation error or output error model structures are generally adopted.

– Selection of the number of past inputs and outputs used in th e model struc-
ture (the system ”memory”): A priori information about the maximum time lag of the
system is helpful. Depending on the maximum frequencies of interest and the time lag
of the system under consideration, the number of regressors is specified.

– An algorithm to minimize the cost function: The difference between responses
of the time series data generated from numerical simulation or experiment and identifi-
cation is minimized. Marquardt-Levenberg algorithm, Gauss-Newton methods or other
nonlinear optimization (genetic algorithms, particle swarm optimization) methods are
used.

– Model Validation: The identified model is tested against signals which have not
been used in the estimation. In a broadband forcing, half of the data is used for the fit
(minimization of the cost function) while the other half is used for validation.

5.2. Linear Identification

Two broadband statistically independent wavelet signals are simultaneously applied at
the inlet and the outlet of the configuration [30]. This kind of signals has been chosen
because it presents a good decorrelation with itself and therefore allows to get two un-
correlated input signals. Moreover the adoption of a wavelet-type signal allows to get
constant power density in the range of frequency of interest. The acoustic responses
to the imposed signals are extracted from the computational domain, at different planes
positioned upstream and downstream the orifice with constant time step, in term of aver-
age pressure and velocity. The acoustic pressure fluctuations p′ and velocity fluctuations
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u′ are then retrieved applying the characteristic based filter as sketched in Fig. (1). This
filter allows us to separate the acoustic fluctuations from the turbulent fluctuations us-
ing the property that acoustic plane waves propagate with the speed of sound whereas
turbulent fluctuations are convected with a velocity of the same order of the mean flow
velocity. The characteristic wave amplitudes p̂+u,d and p̂+u,d are then computed from the
acoustic pressure and velocity fluctuations with Eq. (4.2) and Eq. (4.3). Considering the
linear regime, the system can be seen as a Linear Time Invariant (LTI) System and it is
possible to characterize the answer of the system with the non-parametric Finite Impulse
Response (FIR) model:

ySI(t) =
L

∑
l=1

h(l)u(t − l), (5.3)

where h(l) represent the coefficients of the finite impulse response and u is the input
of the system considered in the analysis. Assuming Eq. (5.3) correlation analysis leads
to the so called Wiener-Hopf Filter equation:

Γh = c, (5.4)

where Γ is the autocorrelation matrix of the inputs, c is the cross-correlation vector
of the inputs and of the outputs, h is the vector containing the coefficients of the finite
impulse response.

By inverting Eq. (5.4) it is possible to compute the impulse response vector:

h = Γ
−1

c. (5.5)

Finally the z-transform of the finite impulse response gives the coefficients of the scat-
tering matrix of the system 4.1.

5.3. Nonlinear Identification

Input-output modeling of the nonlinear systems are generally categorized as nonpara-
metric functional series expansion (Volterra, Wiener series expansion) and paramet-
ric (differential/difference equation models, neural network models, polynomial mod-
els) [31,32]. Volterra series is the extension of the impulse response of the linear system
to the nonlinear case [33,34]. These are the Taylor series expansion applied to function-
als. In Hammerstein and Wiener identification methods, a linear dynamic block is con-
nected to a static nonlinear input and/or output block structure [32, 35]. Neural network
is a black-box identification method which uses expansion functions through the units
(layers) to model the nonlinear in-output relation [29,36,37].

The nonlinear dynamic fit is generally expressed as,

Q(t) = F (Q(t − 1), ..,Q(t −NQ), u(t), ..., u(t −Nu)). (5.6)

The function F is linear with respect to its arguments (regressors, Q(t−i), u(t−j)) for a
linear system. In linear identification, it is not so difficult to obtain a dynamic model using
one of the existing model structures and appropriate choice of the excitation signal. For
a nonlinear system, the form of the function F is not known a priori. This function is
approximated using expansion functions and polynomials. Nonlinear extensions of the
linear model structures are named as NFIR, NARX and NARMAX, and NOE [38].
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Neural network identification methods belong to parametric nonlinear black box iden-
tification procedures [29,39]. They are promising in the identification of any nonlinearity
up to a specified degree of accuracy (universal function approximators). Artificial neural
nets (ANN) are composed of connecting processing elements called "neurons". ANN
structure are composed of different layers; "input", "hidden" and "output layers". The
nodes in the hidden layer perform nonlinear input-output transformations by using differ-
ent activation functions, e.g., sigmoid, tangent hyperbolic, which are shown in Fig. (2).
The weights of the ANN can be adjusted to minimize the difference between the actual
outputs and outputs of the neural net with a given topology. Details for modeling with
ANN can be found in [39]. Data collection as the input-output to the network, choice of
the network architecture, number of neurons, number of hidden layers, activation func-
tion, learning algorithm, validation of the data set are the main steps in ANN modeling.

Let ϕ be the set of regressors with memory length of L, u as the input, y as the output

φ = [1 u(t − 1) ....u(t −L)], (5.7)

and ZN be the set of the input-output data (training set) up to time N . Then the
identification problem will be formulated as the minimization of the error between the
CFD model output and the output from neural network as

VN(θ) = 1

N

N

∑
t=1
[yCFD(t) − yNeuralNet(t)]2. (5.8)

This function will be minimized by some nonlinear iterative search algorithms and we
use Levenberg-Marquardt technique to find the minimum of the function and hence the
weights of neural networks which are denoted by θ . The output from the neural network
will be written in terms of the weights of the network as

yNeuralNet(t) =
M

∑
j=1

Wjf(
L

∑
l=1

wjlφl +wj0 ) +W0, (5.9)

where w and W ′s are the weights of the neural network for the input and output to
the hidden layer and f is the tangent hyperbolic activation function. A topology of the
network structure from input layer to the output layer is depicted in Fig. (3).

In this study, two different model structures are used; a nonlinear ARX model struc-
ture (NARX) and a Hammerstein model structure which are detailed below:

– Nonlinear ARX model :
The nonlinear part of the NARX model is defined as [21]

g(x) =
n

∑
j=1

αjκ (βj(x − γj)) , (5.10)

where κ is the wavelet/sigmoid functions of the network and x denotes the vector of
regressors defined as

x = [y(t − 1), y(t − 2), ...., y(t − na), u(t), .., u(t − nb)] . (5.11)

A schematic representation of the NARX model is shown in Fig. (4).
– Hammerstein Wiener model :

The block diagram representation of the Hammerstein Wiener model is shown in Fig. (5).
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FIGURE 2. Approximation functions used in the nonlinear unit, Sigmoid (above), Wavelet
(below) [2].

FIGURE 3. 1 hidden layer feed-forward neural network structure along with regressors with tangent
hyperbolic activation function f and the linear function F at the output layer, M is the number of
units and L is the memory length of the regressors.

Nonlinear regressor

Nonlinear
Function
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y(t)

u(t)

Nonlinearity Estimator

FIGURE 4. NARX model structure [21].
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FIGURE 5. Hammerstein Wiener model structure [21].

The input data u is transformed to w by using a nonlinear function f

w(t) = f(u(t)). (5.12)

The output of the system is obtained by using a linear transfer function and a nonlinear
map as

x(t) = (B/F )w(t), y(t) = h(x(t)) (5.13)

For the nonlinearity estimator wavelet or sigmoid can be used.

6. Results
6.1. Linear system identification

In Fig.(6) and in Fig. (6) the absolute value and the phase of the scattering matrix for
the linear regime are plotted. Experimental results by [40] and numerical results are
compared. The numerical simulations are in a good agreement with the experimental
results although it can be observed quite important differences in capturing the peaks
at 2000 Hz for the absolute values of the transmission coefficients T + and T −. This is
mainly due to the mesh refinement and to the adoption of the logarithmic law of the
wall to model the turbulent boundary layer. The grid is not yet enough resolved, and
therefore the interaction between turbulence and acoustics is not perfectly captured.
Beside the coarseness of the mesh, this kind of set up allows to get the general trend
of the acoustic dynamic of the configuration under analysis within moderate time for
the simulation. Therefore in order to obtain a preliminary wide-spectra analysis of the
acoustic damping at duct discontinuities in nonlinear regimes, has been considered a
suitable model.

6.2. Nonlinear system identification

In this study, two different configurations are considered for nonlinear identification pur-
pose. In the first configuration, different amplitudes at a constant frequency of 1500 Hz is
considered. The parameter estimation has been performed considering three sinusoidal
excitation whose amplitudes are 40, 60 and 80 % of the mean flow velocity. Validation is
performed for amplitudes equal to 50 and 70 % of the mean flow velocity. The estima-
tion/validation data sets with the number of samples and time step size are tabulated in
Tab. (3)/Tab. (4).

The time step size is taken as the time step size of the CFD computations. A NARX
model structure with 2 inputs and 2 outputs, a MIMO system (u1, u2 inputs, y1, y2 out-
puts), is considered. The orders for the regressors as expressed in Eq. (5.6) are na =
[4 0; 0 4] , nb = [4 4; 4 4]. The nonlinearity estimator for output 1 is a wavenet structure
with 4 units and for output 2 is a wavenet structure with 9 units. This model structure is
called NL-M1. In order to improve the performance of the nonlinear identification, more
nonlinearity is added in terms of the custom regressors. This model structure is called
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FIGURE 6. Absolute values of the scattering matrix coefficients. Solid lines: Linear system
identification results. Dashed lines (–) Experimental results from Testud et al.
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FIGURE 7. Phase of the scattering matrix coefficients. Solid lines: Linear system identification
results. Dashed lines (–) Experimental results from Testud et al.

NL-M2. In NL-M2, the added custom regressors for first output y1 is

[y1(t − 1)2, y1(t − 2)2, y1(t − 3)2, y1(t − 4)2, ...
u1(t)2, u1(t − 1)2, u1(t − 2)2, u1(t − 3)2, ...
u2(t)2, u2(t − 1)2, u2(t − 2)2, u2(t − 3)2] ,
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Experiments Samples Sampling interval
A=40% 1301 8.75 ×10

−6

A=60% 1301 8.75 ×10
−6

A=80% 1301 8.75 ×10
−6

TABLE 3. Estimation data set for different amplitudes at f=1500 Hz.

Experiments Samples Sampling interval
A=50% 1301 8.75 ×10

−6

A=70% 1301 8.75 ×10
−6

TABLE 4. Validation data set for different amplitudes at f=1500 Hz.

Experiments Samples Sampling interval
f=500 Hz 751 3.5 ×10

−5

f=1000 Hz 426 3.5 ×10
−5

f=1500 Hz 276 3.5 ×10
−5

f=2000 Hz 176 3.5 ×10
−5

f=2500 Hz 151 3.5 ×10
−5

TABLE 5. Data set used in identification for different frequencies at amplitude of 80%.

and for the second output y2 is

[y2(t − 1)2, y2(t − 2)2, y2(t − 3)2, y2(t − 4)2, ...
u1(t)2, u1(t − 1)2, u1(t − 2)2, u1(t − 3)2, ...
u2(t)2, u2(t − 1)2, u2(t − 2)2, u2(t − 3)2]

The nonlinearity estimator for NL-M2 is also a wavenet structure with 8 units for output
1 and 6 units for output 2. The estimated and validated results are shown in Figs. (8)
and Fig. (9). In order to compare the performance of the nonlinear identification, the
result of linear identification with the same order is also included in the figures. On
top of the figures, the fits to the CFD model (reference model) are also added. The
best performance both for estimation and validation are obtained with model NL-M2
(nonlinear model with more nonlinearity added through custom regressors ).

In the second configuration, cases corresponding to different frequencies at velocity
amplitude of 80% of the mean velocity are identified by merging different simulations
with a Hammerstein Wiener model structure. The number of samples and time step
size of the sampling interval are shown in Tab. (5). The orders of the linear transfer
function nb = [50 50; 50 50], nf = [0 0; 0 0]. The input nonlinearity estimator is a
wavenet structure with 12 units for input1 and 16 units with input 2. Time step size of
the identification is taken as four times of the time step size of the CFD computations.
The fits between the CFD and predicted outputs are shown in Fig. (10) for frequency of
500 Hz, and for frequency of 2500 Hz. The residuals as shown in Fig. (11) are low and
uncorrelated.
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FIGURE 8. Estimation results of linear/nonlinear system identification compared to CFD for
different amplitudes at a fixed frequency of 1500 Hz, y1: first output, y2: second output.
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FIGURE 9. Validation results of linear/nonlinear system identification compared to CFD for
different amplitudes at a fixed frequency of 1500 Hz, y1: first output, y2: second output.
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FIGURE 10. Fit between the Hammerstein Wiener system identification and CFD for frequency
of 500 Hz (a,b) and 2500 Hz (c,d); y1: first output, y2: second output.
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FIGURE 11. Residual autocorrelation and cross-correlation.
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FIGURE 12. Absolute value of the scattering matrix coefficients. Solid lines: Linear system iden-
tification results. Non-linear system identification for sinusoidal excitation: blue 0.4Umean, green
0.5Umean, red 0.6Umean, azure 0.7Umean, purple 0.8Umean.

6.3. Acoustic scattering matrix in nonlinear regime

A first estimation of the acoustic scattering matrix in nonlinear regimes is here reported.
The coefficients of the scattering matrix have been computed at the different frequencies
and amplitudes as listed in Tab. (1). The methodology adopted in this analysis is based
on the "two sources" strategy [22]. In order to get two independent acoustic fields two
simulations are required: one with a sinusoidal forcing positioned at the inlet and another
with the sinusoidal forcing positioned at the outlet. The coefficients of the scattering
matrix are then retrieved in frequency domain, after a Fourier transform of the data
series, considering the ratio between the fundamental harmonic of the outputs and the
imposed harmonic of the inputs, which have the same frequency, as follows:

⎡⎢⎢⎢⎢⎣
T +(ω) = p̂+d(ω)

p̂+u(ω) R−(ω) = p̂+d(ω)
p̂−

d
(ω)

R+(ω) = p̂−u(ω)
p̂+u(ω) T −(ω) = p̂−u(ω)

p̂−
d
(ω)

⎤⎥⎥⎥⎥⎦
. (6.1)

The gain of the scattering matrix coefficients for the sinusoidal excitation at different
amplitudes and frequencies are shown in Fig.(12) whereas the phase of the scattering
matrix are shown in Fig. (13).

The nonlinear trend is clearly visible: both gain and phase decrease with increasing
amplitude of excitation. The frequency range of whistling potentiality, found by Testud
[40] to be around St = 0.25 (1800Hz) is characterized by a maximum value of the gain of
T + and T − that decreases increasing the amplitude. Therefore the mechanism of sound
amplification due to the acoustic-flow field interaction that takes place in the boundary
layer [41] is damped in nonlinear regimes.
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FIGURE 13. Phase value of the scattering matrix coefficients. Solid lines: Linear system iden-
tification results. Non-linear system identification for sinusoidal excitation: blue 0.4Umean, green
0.5Umean, red 0.6Umean, azure 0.7Umean, purple 0.8Umean.

A first modeling for the acoustic scattering in nonlinear regime has been also consid-
ered. The dynamic of the system has been simulated considering the Wiener-Hammer-
stein model structure Eq. 5.4. The finite impulse response model, identified for the linear
system identification, has been adopted as for the linear block in Fig. (5). Nonlinearities
in the system have been modeled statically considering two saturation functions for the
inputs and two saturation functions for the output. The levels of saturation defined are:

– [−0.55, 0.55] on p̂+u,
– [−0.55, 0.70] on p̂−d ,
– [−0.70, 0.55] on p̂+d ,
– [−0.70, 0.55] on p̂−u.

The results for the absolute values of the coefficient of the scattering matrix are re-
ported in Fig. (14). The Wiener-Hammerstein model let to capture the damping on the
scattering matrix coefficients in nonlinear conditions. The acoustic scattering matrix co-
efficients descreases increasing the amplitudes of the excitation. However this model
structure in not able to model correctly the dynamic of the system. Indeed it damps the
acoustic dynamic for all the frequencies considered, also for frequencies (f < 1000Hz)
in which none nonlinear effect has been noticed for the sinusoidal excitation analysis.

7. Conclusions
In this study, Large Eddy Simulation of a turbulent compressible flow with superim-

posed acoustic perturbations is performed for an orifice in a circular duct. System iden-
tification methods have been used to construct dynamic models of the considered flow
configuration. First a correlation based identification method is used in the linear regime
by employing two broadband statistically independent wavelet signals at the inlet and at
the outlet of the configuration. The scattering matrix is obtained and it is observed that
absolute value and phase of the scattering matrix are in good agreement with the re-
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FIGURE 14. Absolute value of the scattering matrix coefficients. Solid lines: Wiener-Hammer-
stein modelization. Dots: non-linear system identification for sinusoidal excitation. Colors: blue
0.4Umean, green 0.5Umean, red 0.6Umean, azure 0.7Umean, purple 0.8Umean.

ported experimental results. Nonlinear dynamical models are constructed merging the
data sets obtained a) different amplitudes for a fixed frequency and b) different frequen-
cies at a fixed amplitude. A nonlinear ARX model and a Hammerstein Wiener model
structure are employed. The validation tests for these models show that the fits between
the CFD model and identified model are good and residuals are low and uncorrelated.
These models obtained from the linear/nonlinear identification can be used in further
analysis of thermo/ aero-acoustic instabilities. A first estimation of the influence of non-
linearities on the acoustic scattering matrix has been reported and analysed.
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