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Implementing a time-accurate implicit-explicit
method with error estimation for compressible

flow
By K. Oßwald ∗, V. Hannemann ∗ AND P. Birken ‡

∗ Institute of Aerodynamics and Flow Technology, DLR Göttingen
‡ Institute of Mathematics, University of Kassel

An implicit-explicit Runge-Kutta method is implemented in the DLR-TAU code to im-
prove the time integration procedure when performing time-accurate simulations like
Detached-Eddy Simulation of high Reynolds number turbulent flows. The idea is to avoid
the use of the standard dual time stepping approach and instead use an explicit Runge-
Kutta scheme in most parts of the grids where the stable time step size is in the order
of the physical time scale to resolve the large eddies. In the boundary layers where the
underlying RANS model allows for highly stretched grids the local time step reduces
significantly. Therefore, fluxes along wall-normal lines are treated implicitly by the time
integration scheme. The implicit-explicit scheme together with the error estimation ap-
proach is presented in detail.

1. Introduction
The released version of the DLR TAU code provides two possibilities to conduct time

accurate flow simulations: an explicit global time stepping or Backward Differentiation
Formulas.

The computational effort for each physical time step in the explicit method is orders of
magnitude lower than for the iterations needed to solve the system of equations when
using an implicit method. But the time step size of the explicit method is limited to the
smallest time step for which the scheme is still stable in all cells. Therefore, the explicit
scheme with global time stepping is superior as long as the allowed time step is in
the order of the physical time step of interest. In cases where boundary layers have to
be resolved at high Reynolds numbers or fast chemical reactions are taking place an
implicit approach becomes more efficient than an explicit one. To resolve the boundary
layers, cells with large aspect ratio are used leading to so-called grid-induced stiffness
since the stable time step size decreases dramatically.

When conducting a Detached-Eddy Simulation (DES) the physical time scale to be
resolved is in the order of the local explicit time step in those parts of the grid where the
large eddies are resolved. In the boundary layers where the underlying RANS model
allows for highly stretched grids the local time step reduces significantly and an implicit
approach is desired for efficient time accurate calculations. A promising way to combine
as much explicit time stepping as possible with only as much implicit method as neces-
sary to keep the global time step in the order of the relevant physical time step are the
so called implicit-explicit (IMEX) Runge-Kutta methods [1,2].

Since the stability of the scheme is not affected anymore by the time step size when
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FIGURE 1. Control volumes of dual grid ( ) around grid nodes P1 and P2, which are vertices
of the initial grid ( ). The normal flux across the dual mesh face ( ) is referred to as F⃗ .

an implicit method is used, an estimation of the temporal error produced in one time step
is necessary to retain a certain level of accuracy. Depending on the estimated error, an
adaptive time step can be used which is more efficient than calculating with a constant
time step.

2. The DLR-TAU Code
TAU is a second-order, parallel finite volume scheme which solves the compress-

ible, three-dimensional Navier-Stokes equations on the dual grid of a conform mesh
consisting of tetrahedra, prisms, pyramids and hexahedra. The governing equations in
conservative form can be written as

∂

∂t
∭

V
U⃗dV = −∬

∂V
F⃗ ⋅ n⃗ dS (2.1)

with the vector

U⃗ =
⎛
⎜⎜⎜⎜⎜
⎝

ρ

ρu

ρv

ρw

ρE

⎞
⎟⎟⎟⎟⎟
⎠

(2.2)

of the conserved variables (mass, momentum, energy, respectively), and F⃗ being the
inviscid and viscous contributions of the flux vectors in the three coordinate directions.
To close the system, the equation of state for an ideal gas is considered. The volume of
an arbitrary dual grid cell is V , with an outward facing normal vector n⃗ on its boundary
∂V .

2.1. Spatial discretisation

The type of spatial discretisation is cell-vertex because the flow variables are stored
on the vertices of the initial grid. In a preprocessing step the dual metric is computed,
illustrated in Fig. 1.

Either an upwind or a central scheme is availabe for the computation of the fluxes F⃗ .
For the scheme presented here, an upwind scheme is used.
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2.2. Time integration

After the computation of the fluxes the solution is advanced in time. The temporal inte-
gration of the state variables at a grid point is generally formulated as

dU

dt
+R (t,U (t)) = 0, U(0) =U0 (2.3)

where the computation of the spatial discretization R has already been completed and
is only depending on the time t. In TAU, time-accurate simulations can be conducted by
using either a global time stepping scheme or Backward Differentiation Formulas (BDF).

When using BDF methods, a steady state solution is computed in a pseudo time for
each physical time step. This is called a dual time stepping approach since the outer it-
eration procedure treats the physical time step and inner iterations are only performed in
pseudo time. Acceleration techniques like multigrid are available to improve the conver-
gence behaviour of the inner iteration procedure. Despite this, the large number of inner
iterations to advance the solution to steady state is also a drawback of this approach.
For example the number of inner iterations for a RANS computation is in the range of 50
to 200, depending on the case.

The second approach for time-accurate simulations in TAU is an explicit Runge-Kutta
(ERK) method. ERK methods are very efficient if the governing equations are non-stiff.
On the other side, the time step is restricted by the CFL-condition, the stability limit of an
explicit method. In case of stiff problems only a very small time step size can be used for
a stable calculation and the number of time steps increases significantly to advance the
simulation in time. For this reason, ERK methods become inefficient and the application
of implicit methods is preferred.

3. Runge-Kutta methods
Runge-Kutta methods are widely used to integrate general ordinary differential equa-

tions (ODE) like

dU

dt
= F (t,U (t)) , U(0) =U0 (3.1)

with respect to the variable t, here defined as the physical time under consideration
of the initial condition U0. In TAU, time integration is done by solving such an ODE,
compare Eq. (2.3).

3.1. General formulation

To integrate Eq. (3.1) from discrete time levels n to n + 1, a s-stage Runge-Kutta (RK)
scheme can be applied, formulated as

U
(i) =U

(n) +∆t
s

∑
j=1

aijF (t(n) + cj∆t,U(j)) , 1 ≤ i ≤ s,

U
(n+1) =U

(n) +∆t
s

∑
i=1

biF (t(n) + ci∆t,U(i)) .
(3.2)

Each Runge-Kutta stage U
(i) is an approximation to the solution at intermediate time

levels (t(n) + cj∆t), evaluated at the Runge-Kutta nodes cj and weighted with the coef-
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ficients aij for the ith stage. A common design criterion for Runge-Kutta methods is

ci =
s

∑
j=1

aij . (3.3)

The final stage is then computed with the weights bi. All these parameters which deter-
mine the accuracy and stability of a RK method can also be represented in the so-called
Butcher tableau [3].

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

⋮ ⋮ ⋮ ⋱ ⋮
cs as1 as2 . . . ass

b1 b2 . . . bs

In case of an explicit Runge-Kutta method all coefficients aij of the upper triangular and
on the diagonal of the Butcher tableau are zero (aij = 0 for j ≥ i). If any stage U

(i)
cannot be solely computed from lower stages the method is called implicit.

3.2. Implicit-explicit Runge-Kutta methods

Suppose the right hand side of Eq. (3.1) is a sum of N terms and every term is inte-
grated by its own Runge-Kutta method. The generalisation to N -additive Runge-Kutta
methods (ARKN ) can be done in a straightforward manner from Eq. (3.2) and a general
formulation is

U
(i) =U

(n) +∆t
N

∑
k=1

s

∑
j=1

a
[k]
ij F

[k] (t(n) + cj∆t,U(j)) , 1 ≤ i ≤ s,

U
(n+1) =U

(n) +∆t
N

∑
k=1

s

∑
i=1

b
[k]
i F

[k] (t(n) + ci∆t,U(i)) .
(3.4)

A special case of an ARKN method is an implicit-explicit Runge-Kutta (IMEX-RK)
method where N = 2, integrating one term explicitly and the other one implicitly. Such
an ARK2 method can be formulated as

U
(i)
[E] =U

(n)
[E] +∆t

s

∑
j=1

a
[E]
ij F

[E] (t(n) + cj∆t,U
(j)
[EX]) , 1 ≤ i ≤ s,

U
(i)
[I] =U

(n)
[I] +∆t

s

∑
j=1

a
[I]
ij F

[I] (t(n) + cj∆t,U
(j)
[IM]) , 1 ≤ i ≤ s,

U
(n+1) =U

(n) +∆t
s

∑
i=1

biF (t(n) + ci∆t,U(i)) ,

(3.5)

where the superscripts [E] and [I] denote the explicit and implicit method, respectively.
In this case here, the solution at the new time level can be easily computed by sim-
plifying the Runge-Kutta weights b

[E]
i = b

[I]
i ∶= bi to be the same for both the explicit

and the implicit method. Kennedy and Carpenter [1] derived a set of ARK2 methods
and investigated their application to convection-diffusion-reaction equations. Additional
applications of these methods are presented e.g. by Kanevsky et al. [2] and Birken [4].
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3.3. Error estimation and time step control

So-called embedded methods are a simple way to estimate the error in a single integra-
tion step. Such a method consists of two Runge-Kutta methods sharing the same nodes
and coefficients but using different sets of weights. By this means, the whole process
of stage evaluation in Eq. (3.5) can be reused to compute the final stage Û

(n+1) of the
embedded scheme on the new time level with almost no additional computational cost.

Û
(n+1) =U

(n) +∆t
s

∑
i=1

b̂iF (t(n) + ci∆t,U(i)) (3.6)

The order q of the embedded scheme is always less than the order p of the original
scheme. Usually, the suboptimal weights b̂i of the embedded scheme are designed to
satisfy the relation q + 1 = p for the leading order of the error of both schemes. Thus, an
estimate of the error produced in a single time step is simply the difference between both
solutions. The temporal error is computed by subtracting the solution of the embedded
scheme from the solution evaluated by the main scheme

δ =U − Û =∆t
s

∑
i=1
(bi − b̂i)F(t(n) + ci∆t,U(i)). (3.7)

A time adaptive scheme can be build with the knowledge of the temporal error. Time
adaptivity is useful to speed up computations and/or to provide a certain accuracy of
the scheme.

4. Implementation details
This section gives a detailed overview of the chosen IMEX-RK methods and the so-

lution procedure for the line-implicit scheme. Additionally, the determination of a line is
briefly described. The implementation of these modules into a branch of the TAU code
was the work during the Summer Program.

Before the start of this project, TAU was unable to deal with general Runge-Kutta
tableaus. Therefore, the code structure was first extended to handle general Runge-
Kutta methods.

4.1. Implemented IMEX-RK methods

IMEX-RK schemes belong to the class of Additive Runge-Kutta (ARK) schemes. The
ARK3(2), ARK4(3) and ARK5(4) methods by Kennedy and Carpenter [1] are well suited
for the approach presented here and are therefore added to the time integration methods
in TAU.

Each of these methods is a combination of an explicit Runge-Kutta (ERK) method and
a so-called explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method. Amongst
other design criteria, the implemented IMEX-RK methods follow the general Butcher
tableaus shown in Tab. 1 with a

[E]
ij and a

[I]
ij being the coefficients for the ERK and

ESDIRK methods, respectively.
The two RK schemes are coupled through the weights bi = b

[E]
i = b

[I]
i and also through

the nodes ci = c
[E]
i = c

[I]
i , so in both schemes each Runge-Kutta stage is evaluated at

the same intermediate time level. Furthermore, the weights b̂i of the embedded scheme
are the same for both ERK and ESDIRK methods to compute the temporal error after
every time step. For the exact values of the IMEX-RK coefficients the reader is referred
to [1].
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0 0 0 0 0 . . . 0

2γ 2γ 0 0 0 . . . 0

c3 a
[E]
31

a
[E]
32

0 0 ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ ⋱ 0

cs−1 a
[E]
s−1,1 a

[E]
s−1,2 a

[E]
s−1,3 ⋱ 0 0

1 a
[E]
s,1 a

[E]
s,2 a

[E]
s,3 . . . a

[E]
s−1,s 0

b1 b2 b3 . . . bs−1 γ

b̂1 b̂2 b̂3 . . . b̂s−1 b̂s

0 0 0 0 0 . . . 0

2γ γ γ 0 0 . . . 0

c3 a
[I]
31

a
[I]
32

γ 0 ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ ⋱ 0

cs−1 a
[I]
s−1,1 a

[I]
s−1,2 a

[I]
s−1,3 ⋱ γ 0

1 a
[I]
s,1 a

[I]
s,2 a

[I]
s,3 . . . a

[I]
s−1,s γ

b1 b2 b3 . . . bs−1 γ

b̂1 b̂2 b̂3 . . . b̂s−1 b̂s

TABLE 1. General Butcher tableaus for the explicit (left) and the implicit (right) Runge-Kutta
method of the implemented IMEX-RK methods.

Fex Fex

Fim

Fex Fex
b

b

b

b

b

Fim

Fim

Fex
Fex

FIGURE 2. Example of an implicit treated line (light blue) in the near-wall region of a hybrid grid.
The primary grid ( ) and dual grid ( ) is shown as well as the line points (dots) on the
blue line. Fluxes Fex are integrated with an explicit scheme whereas fluxes Fim along a line are
treated implicitly.

A stage order of two is guaranteed by the explicit first stage of the ESDIRK method.
Additionally, the implicit method is stiffly accurate, in case the coefficient matrix A is
non-singular and the last stage satisfies a

[I]
sj = bj for j = 1, . . . , s.

4.2. Solution algorithm

Every line can be treated separately because every line point is implicitly coupled to
its neighbouring line points but has no implicit dependency to any other grid points. An
example of a line treated implicitly in a dual grid flow solver is shown in Fig. 2. From this
image it is easy to derive the formulation of the implicit-explicit scheme. For a line point
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q the state U
(i)
q of the ith RK stage can be computed from

U
(i)
q =U

(n)
q +∆t

⎡⎢⎢⎢⎢⎣
i−1
∑
j=1

aERK
ij

⎡⎢⎢⎢⎢⎣
∑

l∈NE(q)
F
[E] (U(j)q ,U

(j)
l )
⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X
(i)
1

+∆t

⎡⎢⎢⎢⎢⎣
i

∑
j=1

aESDIRK
ij

⎡⎢⎢⎢⎢⎣
∑

l∈NL(q)
F(U(j)q ,U

(j)
l )
⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
,

(4.1)

where aERK
ij = a

[E]
ij and aESDIRK

ij = a
[I]
ij are the RK coefficients of Tab. 1. The number

of faces of a dual cell which are treated explicitly and implicitly for the current line point
q are denoted as NE and NL, respectively.

Since an ESDIRK method is applied the latter term of Eq. (4.1) can be rearranged in
a known and an unknown part by the time the current Runge-Kutta stage is evaluated.
Additionally, the Runge-Kutta coefficients aESDIRK

ii ∶= γ on the diagonal in the Butcher
tableau are always the same for every stage.

U
(i)
q =U

(n)
q +X

(i)
1

+∆t

⎡⎢⎢⎢⎢⎣
i−1
∑
j=1

aESDIRK
ij

⎡⎢⎢⎢⎢⎣
∑

l∈NL(q)
F
[E] (U(j)q ,U

(j)
l )
⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X
(i)
2

+ γ∆t

⎡⎢⎢⎢⎢⎣
∑

l∈NL(q)
F
[I] (U(i)q ,U

(i)
l )
⎤⎥⎥⎥⎥⎦

(4.2)

Both sums X
(i)
1

and X
(i)
2

can be computed from previous stages, so Eq. (4.2) is a
nonlinear equation for the unknown states U

(i)
q . This leads to a system of N blocks of

nonlinear equations for each line, where N is the number of line points and the size of
a block depends on the number of conserved variables considered in the flow problem.
One way of solving is to use a Newton method by iterating a solution from an initial
guess. Rearranging Eq. (4.2) and setting it to zero leads to

H (U(i)q ) ∶=U
(n)
q −U

(i)
q +X

(i)
1
+X

(i)
2
+ γ∆t

⎡⎢⎢⎢⎢⎣
∑

l∈NL(q)
F
[I] (U(i)q ,U

(i)
l )
⎤⎥⎥⎥⎥⎦

!= 0 , (4.3)

Newton’s method to solve this equation is formulated as

∂H

∂U
(i)
q

RRRRRRRRRRRU(i)
q,k

∆U = −H(U(i)q,k) (4.4)

where the subscript k denotes the value on the kth iteration and ∆U is the difference
between the actual and the kth iterate value. This yields a linear system of equations
with the jacobian J ∶=H

′ being a block-tridiagonal matrix because in this IMEX scheme
a line point only depends on its direct neighbours. The derivative at the line point q of
Eq. (4.3) with respect to the conservative variables taking into account the dependency
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on its two neighbouring points q − 1 and q + 1 is

Jq,q = −I + γ∆t

⎡⎢⎢⎢⎢⎢⎣

∂F
[I] (U(i)q ,U

(i)
q−1)

∂U
(i)
q

+
∂F
[I] (U(i)q ,U

(i)
q+1)

∂U
(i)
q

⎤⎥⎥⎥⎥⎥⎦
. (4.5)

A special case for the block JN,N occurs in case of the line point N , neighbouring the
unstructured part of the grid like in Fig. 2. If so, the second term in the bracket of Eq. (4.5)
is zero because fluxes between point q and q + 1 are advanced in time with the explicit
scheme. The subdiagonal and superdiagonal entries of the jacobian matrix are

Jq,q−1 = γ∆t
∂F
[I] (U(i)q ,U

(i)
q−1)

∂U
(i)
q−1

(4.6)

and

Jq,q+1 = γ∆t
∂F
[I] (U(i)q ,U

(i)
q+1)

∂U
(i)
q+1

, (4.7)

respectively. The jacobian matrix of the whole system of equations is of size N×N . Each
block of the jacobian is a square matrix itself, the size being the number of conserved
variables depending on the governing equations. Therefore, the size of the matrix varies
whether a laminar or a turbulent flow is considered.

Since the solution algorithm used here leaves X
(i)
1

and X
(i)
2

unchanged throughout
the iteration procedure they can be stored and reused in every iteration. Additionally, for
every subsequent stage evaluation only the contribution from the current stage adds up
to both terms, so there is no need to compute the whole expression from scratch.

The simplest starting guess for the Newton procedure is the state of the previous RK
stage. For the second RK stage, this is just the previous time level in case of an ESDIRK
method. For every subsequent stage the initial guess can be the iterated state from the
previous one.

The iteration procedure is continued until a sufficient converged state is obtained
which is equivalent to satisfy Eq. (4.3) as best as possible. Once every RK stage has
been iterated, all line points are updated to the new time level by weighting the interme-
diate states of the RK stages. Additionally, the temporal error can now be computed by
using the embedded scheme.

4.3. Determination of lines

Several line search algorithms can be found in the literature [5,6], providing the ability to
find lines not ending on a boundary. None of the algorithms above is used in the IMEX-
RK method presented here since the determination of lines is very easy in the present
case.

Every starting point of a line is lying on a boundary. Additionally, a structured grid
(containing quadrilaterals in 2D and prisms in 3D) is always assumed where the new
time level is integrated implicitly when applying the IMEX-RK method.

Every boundary can be defined by the user to be treated by the IMEX-RK method.
Therefore, the algorithm loops over every boundary and checks if the IMEX setting is
true. If so, every grid point on this boundary serves as a starting point for a single line.
Subsequent line points are easy to detect using the edge-based data structure of the
TAU code. The line search algorithm stops automatically if
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– the aspect ratio of the dual cell is less than a user-defined threshold,
– the maximum number of line points specified by the user is reached,
– the line would extend into the unstructured part of the grid.
Up to now, several special cases are not handled by the implementation and have

to be avoided by the user. One such restriction is that a boundary grid point can only
be associated to one line. Another drawback are lines emerging from a concave sur-
face where lines may cross each other. For a more robust behaviour of the line search
algorithm on general grids, improvements of the algorithm or an error handling of the
mentioned restrictions have to be implemented in the future.

5. Conclusion and outlook
The implementation of an implicit-explicit Runge-Kutta method in the DLR-TAU code

to improve the computational efficiency for time-accurate simulations was started dur-
ing the Summer Program. To resolve high Reynolds number turbulent boundary layers,
highly stretched grid cells are necessary. Therefore, wall-normal lines emanating from
the wall are constructed in regions where cells with large aspect ratios are present.
Along these lines, time integration is done implicitly to circumvent the severe time step
restriction.

Since the implementation of the scheme was not finished during the Summer Pro-
gram, a detailed report on the formulation of the implicit-explicit approach in a flow solver
using a dual grid discretisation is given. The implementation of the new time integration
scheme is work in progress.

The estimation of the temporal error is done via an embedded method with almost no
additional computational cost. The knowledge of the temporal error is useful to extend
the flow solver to a time-adaptive scheme to provide a certain accuracy in the implicit
part of the time integration.
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