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Consistent Thermodynamic Treatment of
Two-Phase Interfaces in Compressible Fluid

Flow
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S. Keller AND C.-D. Munz

Institut für Aerodynamik und Gasdynamik, Universität Stuttgart
Pfaffenwaldring 21, 70569 Stuttgart

A pressure-based diffuse interface scheme for the simulation of compressible flows with
phase transition is presented and assessed with the help of a one-dimensional test
case. In this context, the energy equation is reformulated in terms of pressure and ki-
netic energy establishing the pressure-based character of the approach. The method
is able to handle compressible flows as accurate results are obtained for a standard
one-dimensional shock tube test case. In this contribution, we use a thermodynamic
equilibrium relaxation method which is in consistency with the second law of thermo-
dynamics. The approach is applied to a problem characterized by a large initial density
and pressure jump, which produces phase transition.

1. Introduction
Due to the fact that in a compressible multi-phase fluid flow the interface behavior is

directly coupled to the fluid flow, the numerical modeling of these flows is rather cum-
bersome. There are two main approaches in the direct simulation of two-phase flow:
Diffuse interface and sharp interface methods. In the diffuse interface approach the
interface is allowed to be smeared out over a few grid cells as it is usually done by
shock-capturing schemes. Due to the numerical smearing, states at the interface occur
which are non-physical and an appropriate numerical modeling of the thermodynamic
behavior is needed to guarantee that the numerical results cover the physics. Examples
for such an approach are phase field models and the Baer-Nunziato approach as multi-
fluid model.
In contrast to this, the sharp interface approach tries to keep the interface sharp in a way
such that no non-physical value occurs. For this purpose an interface tracking like the
level-set approach or a marker particle method is needed. Alternatively a moving grid
can be used. The interface tracking schemes have then to be combined with a sub-cell
resolution or a ghost-fluid method to keep the interface sharp.

In the field of computational fluid dynamics there are two well-established concepts of
flow simulation algorithms that are called pressure- and density-based methods. While
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pressure-based approaches are widely used to simulate hydrodynamic flows on the ba-
sis of the incompressible flow equations, the density-based schemes can be considered
to be the standard methods for compressible flows. Both approaches are distinguished
by the use of pressure and density as primary variable, respectively. Although the re-
quirements for the simulation of compressible and incompressible flows differ consid-
erably, a lot of effort has been put into efficiently accessing the weakly compressible
regime with both methods. For this purpose, so-called preconditioning techniques are
used e.g. for the density-based approaches. On the other hand, the originally pressure-
based methods can also be extended to the compressible flow regime.

One possibility for extending a pressure-based incompressible algorithm to the com-
pressible regime is the so-called multiple pressure variables (MPV) approach proposed
by Munz et al. [1,2]. The method builds upon a pressure decomposition in dependency
of a global flow Mach number. In this context, the conservative energy equation is refor-
mulated in terms of pressure and kinetic energy. Therefore, the total energy is first split
in its internal and kinetic part. Afterwards, the internal energy is replaced with the help
of an equation of state (EOS). Finally, the numerical algorithm includes the solution of a
pressure Poisson equation, similar to classical incompressible schemes.

In the following we apply the MPV approach to a reduced Baer-Nunziato model of
Saurel et al. [3] where a mixture stiffened gas equation is used as EOS. The phase
change is calculated with a pressure, temperature and Gibbs free energy equilibrium
relaxation solver by LeMartelot et al. [4] which is in agreement with the second law of
thermodynamics.

The outline of the report is as follows. In the first section, the governing equations
for the numerical simulation are introduced. This is followed by the introduction of the
relaxation solver. In the following section, the results of a two-phase shock tube with and
without phase transition [3] are shown.

2. Governing equations

In this section we describe the equations that are used for the numerical simulations
with the pressure-based method.

2.1. Compressible Two-Phase Flow System

The equations for volume fraction, mass, momentum and total energy for inviscid flows
without gravitational and external forces and heat conduction in compressible gas dy-
namics are given by the reduced Baer-Nunziato equations:
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Here αk denotes the volume fraction of each phase, ρk the density and ck the speed
of sound. The vector u stands for the velocities, which has only one entry for 1D-
calculations. ρ denotes the mixture density (α1ρ1+α2ρ2), p the pressure. The total energy
is given by

ρE = ρe + 1/2ρu2, (2.6)

where e is the internal energy. The mixture pressure is derived from the two stiffened-gas
equations of the two phases
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with Yk = αkρk/ρ and qk, pinf,k, γk denoting parameters for each phase.
Reorganize (2.7) to ρe, inserting this into (2.6) and the result in the energy equation (2.5)
leads to the equation
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where β is defined by

β =( α1

γ1 − 1
+ α2

γ2 − 1
) .

For the MPV approach a pressure splitting is introduced which is knows as

p = p(0) +M2p(2),

where ∇p(0) = 0.
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The final non-dimensional equation system reads as
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A parameter called global flow Mach number M is introduced in the above equations,
which comes from the nondimensionalization. The global flow Mach number results from
the choice of different reference values for the speed of sound and the fluid velocity:

M = ∣vref ∣√
pref /ρref

.

For the calculations shown in this report M = 1.

3. Relaxation Solvers
For the phase change calculations, two approaches are suitable for the MPV-Baer-

Nunziato solver. Both approaches consider thermodynamic equilibrium in agreement
with the second law of thermodynamics. The so called stiff thermo-chemical solver is
explained by Saurel et al. [3] and solves a system of ordinary differential equations.
The other approach proposed by LeMartelot et al. [4] solves a zero function to obtain
the thermodynamic equilibrium.
Since the later is more robust, it was chosen to be used in the MPV solver and will be
explained in more detail in the following subsection.

3.1. Thermodynamic relaxation solver

The system (2.9) solves the flow mixture for mechanical and thermal equilibrium but not
for thermodynamic equilibrium. To get thermodynamic equilibrium only in a vapor-liquid
mixture a interface criterion is considered

α1 ∈ [ε,1 − ε]. (3.1)
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In this mixture zone the thermodynamical equilibrium state is determined by the follow-
ing definitions (subscript 1 is for the liquid state and 2 for the vapor):

v = 1

ρ
= Y1v1 + Y2v2 = const. = v0,

e = Y1e1 + Y2e2 = const. = e0,

T1 = T2 = T,

p1 = p2 = p,

g1 = g2.

(3.2)

When the relaxed state is denoted by ’∗’ the volume equation becomes

v0 = Y ∗1 v∗1(p∗, T ∗) + (1 − Y ∗1 )v∗2(p∗, T ∗). (3.3)

With the constraints of System (3.2) for pressures, temperatures and Gibs free energies
the final temperature T ∗ becomes the saturation temperature TSat(p∗). In this approach
the saturation curve is obtained from the EOS proposed by Lemmon and Huber [5].
A polynomial representation of that curve is used in this implementation to avoid high
computational cost. Now a first linking of the liquid mass fraction and the final state
pressure is obtained by

Y ∗1 = v∗2(p∗) − v0

v∗
2
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1
(p∗) . (3.4)

The second linking is obtained with the constraint that the energy is constant

e0 = Y ∗1 e∗1(p∗, T ∗) + (1 − Y ∗1 )e∗2(p∗, T ∗). (3.5)

Since both linkings must be true a single equation must be solved
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2
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1
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The solution of equation (3.6) is computed with the bisection method. For further and a
more detailed explanation see [3] and [4].

4. Test case and Results
4.1. Test case

A detailed description of the test case can be found in [3]. A vertical tube is filled with one
fluid, a membrane separates the liquid from a very low pressure vapor chamber of this
fluid. As soon as the membrane is destroyed a rarefaction front runs through the liquid
producing a superheated liquid behind it. Behind that front through the superheated
liquid propagates a phase-transition front producing a liquid-vapor mixture. In Fig. 1 the
initial state and a state during the wave propagation is shown.

4.2. Results

4.2.1. Two-phase shock tube without mass transfer

The fluid used in this example is dodecane. A 1m tube is filled with liquid dodecane in
the left part. The pressure of the liquid is pl = 108 Pa and the density is ρl = 500kg m−3.
The membrane is located at x = 0.75m. The right part is filled with dodecane vapor with
a pressure of pr = 105 Pa and a density of ρr = 2kg m−3. α1 and α2 are initially set to 10−8
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FIGURE 1. Top : the initial state of the tube. Bottom : the membrane is ruptured and the waves of
a cavitating system propagating through the tube.

for numerical reason. This test does not include the relaxation solver, which means, that
no phase transition can occur. The end time is t = 473µs. In Fig. 2 the numerical result
shows a good agreement with the exact solution.

4.2.2. Two-phase shock tube with mass transfer

For this test case the same setup as in section 4.2.1 is used, but this time with the
relaxation solver. The epsilon for the interface is chosen to ε = 10−2. The extra evapora-
tion wave appears in Fig. 3. The second jump in the vapor mass fraction is the contact
discontinuity between the liquid-vapor mixture produced by evaporation.

5. Conclusion
The MPV-approach is used to transfer the density-based diffuse interface approach

from Saurel et al. [3] to a pressure-based system. A suitable thermodynamic equilib-
rium relaxation solver from LeMartelot et al. [4] is used to calculate the phase transition
with the MPV-solver. Without mass exchange the solver shows good agreement with the
exact solution. If phase transition is allowed by using the relaxation solver at the inter-
face, an evaporation front appears in the numerical solutions. Compared to the results
from [3] the plots are quite similar. The biggest differences are in the evaporation front
velocity and in the vapor mass fraction. These difference need to be further investigated
in the future.
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FIGURE 2. The liquid-vapor shock tube filled with dodecane but without phase transition. The
symbols represent the numerical solution, the solid lines show the exact one.
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FIGURE 3. Here the same initial setup is used as in Fig. 2 but here the relaxation solver for
phase change is used at the interface. The line represents the numerical result.
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