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We present a multiphase compressible flow solver that accounts for surface tension and
is capable of handling stiff media. The solver enjoys recent developments on oscillation-
free modeling of compressible flows using finite volume discretization when stiffened
equation of state is used. Surface tension is applied through a conservative form based
on the projection of one of the advected fluid properties of the solver. We employ fifth or-
der WENO reconstructions along with HLLE numerical flux as the approximate Riemann
solver. Advection equation of material properties is cast into a conservative form to be
unified with the flux-based hyperbolic solver and an extra modification is made based
on the advection equations to be consistent with the HLLE flux. The solver is applied
to the severe case of oscillating ellipsoidal droplet of water in air as well as the rising
bubble problem. We also explain why levelset-based advection of interface together with
stiffened equation of state cannot guarantee a stable solution.

1. Introduction
Continuum modeling and simulation of multicomponent flows has applications in cav-

itation and bubble collapse in lithotripsy, atomization in sprays, inertial confinement fu-
sion and so on. In many practical situations, compressibility effects cannot be neglected.
Moreover, when the interface between the phases undergo large and complex deforma-
tions, capillary effects can become equally important as the convection, if not dominant.

Different approaches to deal with multiphase flows under capillary effects have been
presented in [1, 2]. The former uses a combined levelset/volume-of-fluid method in
the context of incompressible flows while the later employes discontinuous Galerkin
ALE formulation for front tracking and the hyperbolic system of equations and a non-
conservative form of the capillary force. However [2] does not consider any stiff media
present in the considered flows and [1] explicitly solves for the pressure.

In a compressible flow setting, stiff media is often represented by stiffened equation of
state [3] and oscillation-free treatment of the governing system of equations has only re-
cently been demonstrated [4]. Surface tension is often modeled as a force term after [5]
which requires a definition for the normal and the curvature of the interface. This in turn
translates into numerical differentiation of the conventional interface markers such as
volume fraction or levelset twice.

In case of a levelset-based advection, distortions are inevitable due to complex flow
maps and re-distancing is necessary to ensure accurate calculation of interface normals
and curvature. Different re-distancing procedures have been suggested to ensure that
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the interface location does not change [6] but in general, since material properties such
as specific heat ratios need to be computed based on the levelset field, these methods
do not preserve cell averages of energy over the smooth interfaces.

In this work we use a conservative form of the surface tension together with the re-
cent developments in simulation of multiphase compressible flows within stiff media.
The feasibility of such a solver is examined in the problem of an oscillating droplet of
water in air and to the problem of a rising bubble of air inside a stiff medium. Finally we
briefly discuss the reason for inability of levelset-based solvers in simulating multiphase
compressible flows when stiff media are involved.

2. Governing equations
We consider an inviscid compressible flow described by the Euler equations as a

one-fluid model [7] for two phase flows:

∂ρ

∂t
+∇ ·(ρu) = 0

∂(ρu)

∂t
+∇ ·(ρu⊗ u+ pI) = 0

∂(E)

∂t
+∇ ·((E + p)u) = 0 (2.1)

with ρ being the density, u the velocity vector, p the pressure and E the total energy.
We model the behavior of both phases through a stiffened equation of state [3] of the

form:

Γp+Π∞ = E − 1

2
ρ|u|2 (2.2)

with Γ = 1/(γ − 1) and Π∞ = γp∞/(γ − 1) where γ is the mixture ratio of specific heats
and p∞ is the mixture correction pressure. The mixture properties are defined by:

γ = 1 +
(γ2 − 1)(γ1 − 1)

φ(γ1− 1) + (1− φ)(γ2 − 1)

p∞ =
γ − 1

γ
(
γ1p∞1

(1− φ)

γ1 − 1
+
γ2p∞2

φ

γ2 − 1
) (2.3)

where φ specifies the initial color function separating the two phases.
To complete the model for two phase compressible flows, two advection equations of

the form:
∂Γ

∂t
+ u ·∇Γ = 0

∂Π∞

∂t
+ u ·∇Π∞ = 0 (2.4)

are introduced for the material properties of the phases.
Surface tension is often modeled as a distributed body force (CSF, introduced in [5]

which is applied to a band close to the interface. In this work, we employ another ap-
proach in which capillary effects are modeled via a conservative operator. The conven-
tional surface tension force can be written as:

Fσ|φ=0 = σκn (2.5)

with κ being the mean curvature, n the normal of the interface and σ the surface tension
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coefficient. One can rewrite the surface force as:

F = ∇ ·T

T = σ(I− nTn)|∇C| (2.6)

where C is a color function describing the two phase interface. After [8, 9] the surface
tension tensor, T, can be put into the form:

T = σ(
1

d
I− nTn)|∇C|. (2.7)

where d is the dimension of the problem. As noted by [10], the direct computation of n
can be replaced by the following:

T = σ
1

|∇C| (
1

d
I|∇C|2 −∇CT∇C). (2.8)

The final system of equations without considering viscous effects reads:

∂ρ

∂t
+∇ ·(ρu) = 0

∂(ρu)

∂t
+∇ ·(ρu⊗ u+ pI+T) = 0

∂(E)

∂t
+∇ ·((E + p)u+T ·u) = 0. (2.9)

which along with the advection equations forms a quasi-conservative system.

3. Numerical method
3.1. Hyperbolic solver

The hyperbolic part of the governing equations (2.9) can be cast into the vector form:

qt +∇ · f(q) = 0 (3.1)

where q(x, t) = (ρ, ρu, E)T , with initial conditions q(x, 0) = q0(x) and appropriate
boundary conditions. The integral form of (3.1), written in 1D as:

∮
(qdx− f(q)dt) = 0 (3.2)

is used as a starting point for the finite volume discretization. If the computational domain
is uniformly discretized by finite volumes, then cell averages of {qi} at time t = tn and
the flux:

Fi±1/2 =
1

∆t

∫ tn+1

tn
f(qi±1/2(t))dt, (3.3)

determine the new solution at time tn+1 = tn+∆t, qn+1. In order to avoid the expensive
Riemann solver [11], Fi±1/2 is approximated by a numerical flux F̂n

i±1/2. The new values

of {qn+1
i } are found after one simulation step, by evaluating the numerical fluxes and

perform a time integration for all the averages:

qn+1
i = qn

i − ∆t

∆x
(F̂i+1/2 − F̂i−1/2). (3.4)

Since F̂i+1/2 and F̂i−1/2 depend on the local cell neighbors of qn
i , the simulation step

formulated in (3.4) can be seen as a non-linear uniform filtering at the location of qn
i .
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There have been various formulations for these numerical fluxes namely Roe [12], Lax-
Friedrichs [13] and HLL [14]. In this paper, we use the HLLE [15] flux which is capable
of correctly resolving isolated shocks and rarefaction waves.

The exact Riemann solver and its approximate versions require a reconstruction step
which provides them with the left and the right states as well as the exact and approx-
imate characteristic velocities on the cell interfaces. A broad range of reconstruction-
evolution methods has been developed to make this reconstruction high order as well
as oscillation-free e.g. TVD/MUSCL [16], PPM [17], ENO [18], etc.

Besides, it has also been shown that the reconstruction of conserved quantities, q,
leads to oscillations in the pressure close to the contact discontinuity and violates the
zero jump conditions of velocity and pressure across the interface generating spuri-
ous wiggles on the interface [19]. This can be overcome by reconstructing the primitive
quantities u = (ρ, u, v, w, p), based on which the conserved quantities and fluxes are
then calculated [20, 21]. We use fifth order WENO scheme [22, 23] to this end. Total
Variation Diminishing (TVD) low-storage Runge-Kutta scheme of order three is used as
the time-stepper [24].

Moreover, as demonstrated by [4,19], not every function is suitable to advect in order
to retrieve the material properties: to avoid spurious oscillations in the pressure field,
1/(γ − 1) and γp∞/(γ − 1) should be advected using the same Riemann solver as for
the conservation equations. Therefore a modified form of the advection equation:

∂φ

∂t
+∇ ·(φu) = φ∇ ·u (3.5)

is used for the treatment of advected material properties. In order to compute ∇ ·u in the
right hand side of equation (3.5) on the finite volume cell i, one needs to select correct
velocities on the cell interfaces located at xi±1/2. We therefore adopt a similar idea as
in [19, 20] to calculate the velocities on the cell boundaries and for a hyperbolic solver
based on HLLE flux, one can write:

ui±1/2 =
a+i±1/2u

−
i±1/2 + a−i±1/2u

+
i±1/2

a+i±1/2 − a−i±1/2

(3.6)

where u± denotes the reconstructed left and right velocities at the cell interface and a±

are the reconstructed left and right-running characteristic speeds. The term φ on the
right hand side of (3.5) can be obtained via a mid-point quadrature and therefore to-
gether with Eq. (3.6) approximates the right hand side to the second order. It should be
mentioned that, as shown in [4], when temperature directly comes into the flow calcu-
lations, an advection equation for volume fraction needs to be added to the system of
equations in order to prevent oscillations in temperature. However this is not the case in
the present work.

3.2. Surface tension operator

We normalize one of the material properties, here Γ, to obtain a color function (or a
volume fraction), which is used as C in Eq. (2.8). The values of C are in turn used to
compute |∇C| and the surface tension tensor T on the cell interfaces to the second
order. In 3D, we use the information of 33 cells to compute the central differences and
averages necessary for the surface tension tensor on cell boundaries. We consider a
fixed surface tension coefficient in this work, however the conservative form of the cap-
illary forces supports varying σ on the interface.
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FIGURE 1. Interface of the droplet (left), temporal evolution of the global kinetic energy for the
oscillating droplet (middle), grid convergence of the global kinetic energy (right).

4. Results
4.1. Oscillating droplet

In this test case, an ellipsoidal droplet of water, modeled by γ = 2.4 and p∞ = 107 Pa,
is placed inside air, modeled by γ = 1.4 and p∞ = 0 Pa. The ellipsoid is initially defined
by (x− 0.5)2/0.12 + (y − 0.5)2/0.062 = 1. The initial density is set to 100 kg/m3 for the
droplet and to 1 kg/m3 for the surrounding air. The ambient pressure is set to 105 Pa.
The computational domain is [0, 1]2 and we use zeroth order extrapolation for the non-
reflecting boundaries. Surface tension coefficient is set to 341.64 N/m deduced from a
similar test in [8]. The computational domain is [0, 1]2 and the CFL number is fixed at
0.6.

We plot the evolution of the kinetic energy in Fig. 1 (left). The period of the oscillations
in the kinetic energy of the field, measured from the plot, is found to be about 0.02951
seconds. Analytical period of oscillation for this problem after [25] can be calculated
from:

ω = (o3 − o)
σ

(ρl + ρg)R3
(4.1)

which for our problem, using the equilibrium radius of 0.0734m and the oscillation mode
o = 2, is 0.02785 seconds. We show the grid convergence of the global kinetic energy
for grid sizes of 1282, 2562 and 5122 in Fig. 1 (right).

4.2. Rising bubble

In this test case, we simulate the behavior of an air bubble rising in water, modeled by
γ = 2.1 and p∞ = 2 ·105. The density ratio between the surrounding and the bubble is
set to 100. The ambient pressure is set to 1000. The non-dimensional number which
characterizes this flow is the Eotovos number defined by:

Eo =
∆ρgl2

σ
(4.2)

and for the two test cases studied here is chosen to be 1.3 and 1.3 ·102. Initial shape of
the bubble is chosen to be an ellipsoid as in Sec. 4.1. The computational domain is set
to [0, 1] × [0, 3] and is discretized by 128 × 384 elements which results in 20 grid points
per equilibrium radius.

In Fig. 2, we present the air/water interface for the rising bubble flow. At Eo = 1.3 ·102,
the flow is very much dominated by convective forces due to gravity and the bubble
undergoes a large acceleration in the middle compared to the sides and therefore it
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FIGURE 2. Interface (α = 0.5) of the rising bubble test case at t = 0, 0.15, 0.28, 0.36, 0.57, 0.71
and 1.00 (from bottom to top) for Eo = 1.3 ·102 (left) 1.3 (right).

breaks apart. At Eo = 1.3, capillary effects seem to become significant and therefore
the ellipsoidal bubble is closer to its equilibrium circular shape at the top end of the
domain. These observations are in agreement with the experimental bubble dynamics
map in [8].

4.3. Inability of levelset formulation for the advection of multiphase interfaces in stiff
media

Levelset-based advection of interfaces is another common approach in the filed of multi-
phase flows. In compressible flows, one needs to filter the levelset field with a Heaviside
function to retrieve material properties such as the specific heat ratio or the correction
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pressure for the stiffness of the media. Using a sharp Heaviside or one with a fixed
smoothing length (often fixed at the maximum resolution) is not in general consistent
with the hyperbolic solver as numerical fluxes normally tend to smoothen out isolated
contact discontinuities even when there is no velocity in the flow. Therefore computed
pressure over the smoothened interface will be different than what is implied by the
numerical flux machinery. This problem becomes severe when dealing with realistic cor-
rection pressures (up to 103 times more than the ambient pressure) as the computed
pressure based on the filtered levelset, introduces a large amount of internal energy on
one side of the interface. In this regard, advection of material properties (or a function
of properties as shown in this work) is favored over the use of levelset function.

5. Conclusions
We have shown that the recent advances in treatment of multiphase compressible

flows within stiff media can be successfully employed together with a conservative sur-
face tension operator computed based on one of the advected material properties. We
have also discussed about why levelset-based advection and re-distancing can fail in
the considered flows. Further improvements can be made to ensure the mass conser-
vation of the individual phases by introducing an extra advection equation for the vol-
ume fraction of one of the phases. This can also remove the extra normalization step in
the current solver for computing surface normals. Future work involves introducing the
Brinkmann penalization model [26] to support solid obstacles within the solver.

Acknowledgments
Financial support has been provided by the German Research Foundation (Deutsche

Forschungsgemeinschaft – DFG) in the framework of the Sonderforschungsbereich
Transregio 40 and the IGSSE (International Graduate School of Science and Engi-
neering) at Technische Universität München. Computational resources have generously
been provided by the Leibniz-Rechenzentrum München (LRZ).

References
[1] BRACKBILL, J. U., KOTHE, D. B. AND ZEMACH, C. (1994). A Level Set Approach
for Computing Solutions To Incompressible 2-Phase Flow. J. Comp. Phys., 114,
146–159.
[2] NGUYEN, V., PERAIRE, J., KHOO, B. C. AND PERSSON, P. (2010). A discontin-
uous Galerkin front tracking method for two-phase flows with surface tension. Com-
puters and Fluids, 39, 1–14.
[3] HARLOW, F. AND AMSDEN, A. (1971). Fluid dynamics. LANL Monograph LA-
4700.
[4] JOHNSEN, E., HAM, F. AND LARSSON, J. (2009). Numerical errors generated by
shock-capturing schemes in compressible multicomponent flows. Center for Turbu-
lence Research – Annual Research Briefs 2009.
[5] SUSSMAN, M., SMEREKA, P. AND OSHER, S. (1992). A continuum method for
modeling surface-tension. J. Comp. Phys., 100, 335–354.
[6] RUSSO, G. AND SMEREKA, P. (2000). A remark on computing distance functions.
J. Comp. Phys., 163, 51–67.



96 B. Hejazialhosseini, X. Y. Hu, N. A. Adams & P. Koumoutsakos

[7] PROSPERETTI, A. AND TRYGGVASON, G. (2008). Computational Methods for
Multiphase Flow. Cambridge University Press.
[8] PERIGAUD, G. AND SAUREL, R. (2005). A compressible flow model with capillary
effects. J. Comp. Phys., 209, 139–178.
[9] HU, X. Y. AND ADAMS, N. A. (2006). A multi-phase SPH method for macroscopic
and mesoscopic flows. J. Comp. Phys., 213, 844–861.

[10] WU, J., YU, S. T. AND JIANG, B. N. (1998). Surface tension and viscosity with
lagrangian hydrodynamics on a triangular mesh. International Journal for Numerical
Methods in Engineering, 42, 583–600.

[11] TORO, E. F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynam-
ics. Springer-Verlag, Berlin.

[12] ROE, P. L. (1981). Approximate Riemann solvers, parameter vectors and diffe-
rence-schemes. J. Comp. Phys., 43, 357–372.

[13] ROE, P. L. (1954). Weak solutions of nonlinear hyperbolic equations and their
numerical computation. Communication on Pure and Applied Mathematics, 7, 159–
193.

[14] HARTEN, A., LAX, P. D. AND VAN LEER, B. (1983). On upstream differencing and
Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25, 35–61.

[15] EINFELDT, B. (1988). Uniformly high order accurate essentially non-oscillatory
schemes 3. SIAM journal on numerical analysis, 25, 294–318.

[16] ANDERSON, W. K., THOMAS, J. L. AND VAN LEER, B. (1986). Comparison Of
Finite Volume Flux Vector Splittings For The Euler Equations. AIAA Journal, 24,
1453–1460.

[17] COLELLA, P. AND WOODWARD, P. R. (1984). The Piecewise Parabolic Method
(PPM) For Gas-Dynamical Simulations. J. Comp. Phys., 54, 174–201.

[18] HARTEN, A., ENGQUIST, B., OSHER, S. AND CHAKRAVARTHY, S. R. (1997). Uni-
formly high order accurate essentially non-oscillatory schemes 3. J. Comp. Phys.,
131, 3–47.

[19] SAUREL, R. AND ABGRALL, R. (1999). A simple method for compressible multi-
fluid flows. SIAM Journal on Scientific Computing, 21, 1115–1145.

[20] JOHNSEN, E. AND COLONIUS, T. (2006). Implementation of WENO schemes in
compressible multicomponent flow problems. J. Comp. Phys., 219, 715–732.

[21] MIGNONE, A., PLEWA, T. AND BODO, G. (2005). The piecewise parabolic
method for multidimensional relativistic fluid dynamics. Astrophysical Journal Sup-
plement Series, 160, 199–219.

[22] LIU, X. D., OSHER, S. AND CHAN, T. (1994). Weighted Essentially Nonoscillatory
Schemes. J. Comp. Phys., 115, 200–212.

[23] JIANG, G. S. AND SHU, C. W. (1996). Efficient implementation of weighted ENO
schemes. J. Comp. Phys., 126, 202–228.

[24] WILLIAMSON, J. H. (1980). Low-Storage Runge-Kutta Schemes. J. Comp. Phys.,
35, 48–56.

[25] FYFE, D. E., ORAN, E. S. AND FRITTS, M. J. (1988). Surface tension and vis-
cosity with lagrangian hydrodynamics on a triangular mesh. J. Comp. Phys., 76,
349–384.

[26] LIU, Q. AND VASILYEV, O. V. (2007). A Brinkman penalization method for com-
pressible flows in complex geometries. J. Comp. Phys., 227, 946–966.




