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In this work, we extend our previous uncertainty analysis of shock-bubble interactions
based on an experimental case of helium-air shock-bubble interaction. The uncertainty
of the inhomogeneity of the contaminating air inside the helium bubble is formulated as a
new uncertainty parameter. The interface evolution and the total vorticity are considered
as the quantities of interest. The gas inhomogeneity along the spanwise direction inside
the bubble introduces a flow asymmetry along the streamwise direction. The variance in
the initial bubble is found to be transported and amplified as the interface evolves. The
vortex position of the rolled-up bubble is found to be the region of the maximum variance
of density. The total vorticity under different gradients of gas inhomogeneity is compared
with those under different bubble shape and different amount of gas contamination. As
compared with the analytical and numerical analysis of baroclinic vorticity production for
a homogeneous circular bubble in shock-bubble interaction in reference literature, the
baroclinic vorticity generation during the vorticity deposition phase is found to be largely
dependent on the gas inhomogeneity inside the bubble and the windward length of the
bubble when uncertainties of the initial bubble condition are present.

1. Introduction
Based on our previous work on the uncertainty analysis of shock-bubble interac-

tions [1], we aim at extending the analysis to a new uncertainty parameter.
The primary objective of uncertainty analysis is to quantify the uncertainties present

in experiments, which exist inevitably due to the variation in test conditions and limited
reproducibility of the experiment setup and conditions. For shock-bubble interactions,
the experimental condition of the bubble is one of the main sources of variation and
thus uncertainty. As an example, the test gas impurity inside the bubble is present in
many shock-bubble interaction experiments, whether the membrane or membraneless
bubble formation technique is used. The problem of the test gas impurity has been ad-
dressed previously, for example in [2]. It is shown that the effect of an uncertain amount
of acetone (added to the bubble gas for experimental image tracing purposes) on the
evolution of the Richtmyer-Meshkov Instability (RMI) and mixing in an air-SF6 shock-
bubble interaction is not negligible as demonstrated by means of a series of numerical
simulations.

In [1], the uncertainty parameters of the bubble deformation and the degree of air
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FIGURE 1. Schematic of the computational domain for the shock-bubble interaction simulation.
The helium bubble diameter, D, is 50mm.

contamination in the helium bubble were formulated, and the quantities of interest in-
cluding the interface evolution and the primary vorticity generation were studied. The
uncertainty of the amount of contamination was studied under the assumption that the
contaminating gas is evenly distributed inside the bubble. However, as observed from
the images of the bubble initial condition in the experimental literature, the gas mixture
is not necessarily homogeneous. For example in [3], when the bubble is formed in the
shock tube, the heavy gas tends to concentrate on one end of the bubble due to gravity,
leading to gas inhomogeneity inside the bubble, and in some cases also to the deforma-
tion of the bubble. Therefore, the current study aims to extend the previous work in [1]
to a new uncertainty parameter, which is the inhomogeneity of the bubble gas mixture,
i.e., the mixture of helium and the contaminating air.

The paper is organized as follows: in the section of preliminaries, the shock-bubble
interaction studied, the definition of the uncertainty parameter and the quantities of in-
terest are described. Then, the governing equations and the numerical methods of the
flow solver, and the uncertainty quantification methods are explained. The statistic of
the two quantities of interest are presented, followed by the discussions of the variance
in interface evolution and the baroclinic vorticity generation.

2. Preliminaries
2.1. Air-helium shock-bubble interaction

As in [1], the experimental case of a cylindrical-helium-bubble in air hit by a shock wave
at Mach number of 1.22 of [4] serves as the base case for our investigation.

The case setup from [1] is adopted, except in the current study no symmetry along
the centerline in the streamwise direction is assumed, as it is expected that the gas
inhomogeneity along the spanwise direction would introduce asymmetric flow patterns.
The computational domain is shown in Fig. 1.

2.2. Uncertainty parameter

The uncertainty parameters are defined based on the available information from the
experimental literature, and in addition generalized to describe the generic uncertain-
ties present in shock-bubble interaction experiments. In [4], the authors reported that
the helium-cylinder was contaminated by 28% air (by mass). The estimation of the air
contamination is subject to experimental measurement errors, and when they are taken
into account, the range of the air contamination is found to be [48.38%, 5.87%]. This un-
certainty parameter of the air contamination, fairmass, has been studied in [1] under the
assumption that the contaminating air is homogeneously distributed inside the bubble.
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Another uncertainty parameter which is generic to describe the bubble deformation –
eccentricity, e – has also been studied in [1]. The range of e is taken in the interval
[−0.5,+0.5] which describes a bubble of an elliptic shape with its axis along the stream-
wise direction varying. The amount of air contamination of 28% by mass is maintained
in the range of e.

In this paper, we extend the study of the uncertainty of air contamination to gas in-
homogeneity. While fixing the air contamination to 28% by mass, we assume a gas
inhomogeneity inside the bubble, fairin . This uncertainty parameter aims to mimic the
uncertainty of the initial distribution of the contaminating gas in the bubble, which can be
present in shock-bubble interaction experiments, for example [3]. By keeping the same
amount of air inside the bubble and assuming the inhomogeneity gradient is along the
spanwise direction, the range of fairin is defined as [0, 1], where the two extreme cases
and the middle case are:

– fairin = 0: the extreme case where no inhomogeneity is assumed, i.e., the contami-
nating air is evenly distributed in the bubble.

– fairin = 1: the extreme case where the maximum inhomogeneity is assumed, i.e.,
pure helium is on one end of the bubble.

– fairin = 0.5: the middle case where a certain inhomogeneity is assumed.
The density plots of these cases are shown in Fig. 4.

2.3. Quantity of interest

Two quantities of interest, namely the interface evolution and the total vorticity, are con-
sidered in this study.

2.3.1. Interface evolution

For code verification purposes, the interface evolution is an important quantity of inter-
est for the comparison between different numerical results as well as comparison with
the experimental results [5]. On the other hand, the interface evolution is also studied ex-
tensively by experiments, for example in [3] different geometries of the shocked bubble
under different gas pairs were recorded for characterizing the shock-bubble interactions.
In [1] the characteristic interface points, namely the upstream location, the downstream
location and the jet of the interface, are used to characterize the interface evolution.
Here in our study of the uncertainty of the gas inhomogeneity, as the flow pattern along
the streamwise direction is expected to be asymmetrical, the interface evolution can no
longer be represented by the characteristic interface points. Moreover, as shown below
in Sec. 4, the maximum variance is located at the vortex position which cannot be mea-
sured by the characteristic interface points. Therefore, to examine the interface evolution
on the whole flow field, the plot of density and Schlieren-type images, |∇ρ|, are used to
illustrate the interface evolution.

2.3.2. Total vorticity

The other quantity of interest is the total vorticity, Γ, which is defined as the integration
of the magnitude of vorticity over the domain:

Γ =

∫
|ω| dxdy , (2.1)

where ω is the vorticity defined as ∇× v, and v is the velocity. During the early time of
shock-bubble interactions, the total vorticity measures the baroclinic vorticity production
due to the misalignment of the pressure gradient and the density gradient.
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3. Methods
3.1. Governing equations and numerical methods of fluid simulation

To simulate the shock-bubble interaction, a two-phase compressible flow algorithm is
adopted. The Euler equations, without the surface tension, are used for the shock-
bubble interaction simulation. The volume-of-fluid (VOF) interface-capturing method is
employed, and the two phases are represented by their volume fractions, where the for-
mulation of the volume-fraction transport equations of [6] is adopted. A single-velocity,
pressure-equilibrium, six-equation model is obtained as follows:

∂α

∂t
+∇ ·αu = α

KS

Kα
S

∇ ·u , (3.1)

∂β

∂t
+∇ ·βu = β

KS

Kβ
S

∇ ·u , (3.2)

∂αρα

∂t
+∇ ·αραu = 0 , (3.3)

∂βρβ

∂t
+∇ ·βρβu = 0 , (3.4)

∂ρu

∂t
+∇ ·ρuu+∇p = 0 , (3.5)

∂ρE

∂t
+∇ · (ρE + p)u = 0 , (3.6)

where α and β are the volume fractions of the two phases respectively, t is the time, u
is the velocity, KS is the mixture bulk modulus, Kα

S and Kβ
S are the phase bulk moduli,

ρα and ρβ are the phase densities, p is the pressure and E is the total energy.
Both phases are described by the ideal-gas equation of state (EOS) which reads

p = (γ − 1) ρe , (3.7)

where e is the internal energy and γ is the heat capacity ratio.
The volume-fraction equations are discretized by a volume-fraction adjustment corre-

sponding to the compressibility effect [6]. The HLL Riemann solver [7] is adopted for the
flux calculation and the reconstruction of the variables at the cell face are calculated by
the van Leer MUSCL scheme. The time derivative is discretized by a third-order TVD
Runge-Kutta scheme where the time step is determined by the CFL requirement with a
CFL number of 0.2.

In order to verify our simulation code, and to demonstrate the quantities of interest
computed are accurate, we conduct a grid-convergence study and compare the result
with other established numerical results for the base deterministic case simulated by
reference literature. In Fig. 2, the characteristic interface points converge as the grid
refines, and by comparing the results with that of [5], it can be seen that the evolution
of the characteristic interface points in the two simulations are in good agreement. In
Fig. 3, Γ converges upon the refinement of the grid for t = 0− 150µs. The evolution of Γ
also agrees with the observations of [8] where Γ bottoms out at around t = 60µs, which
is the moment when the refracted wave emerges from the bubble. For t = 0− 60µs, the
shock front traverses one bubble-radius distance, i.e., it sweeps through the windward
side of the bubble.
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FIGURE 2. Space-time diagrams for three characteristic interface points. Solid line,
∆x/D = 0.0025, dashed line, ∆x/D = 0.005; dotted line, ∆x/D = 0.01.
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FIGURE 3. Total vorticity against time. Solid line, ∆x/D = 0.0025, dashed line, ∆x/D = 0.005;
dotted line, ∆x/D = 0.01.

3.2. Uncertainty quantification method

The uncertainty quantification can be categorized into three areas: i) data assimilation,
ii) uncertainty propagation, and iii) output certification. In this work we focus on the un-
certainty propagation, where by assuming a Probability Density Function (PDF) of the
uncertainty parameter, the statistic and the PDF of the quantities of interest can be
studied. The Monte Carlo method, the Stochastic Collocation method and the Stochas-
tic Galerkin method are the principal methods for the uncertainty propagation. The
Stochastic Collocation method, which is based on a probabilistic analysis, is adopted
for the uncertainty quantification of this work. The output statistics are obtained from a
limited number of deterministic calculations by the flow solver.

First, the uncertainty parameter is converted into a random variable. Since the distri-
bution of the input uncertainty parameter is not available from the experimental literature,
it is assumed to be uniform in the range of the uncertainty parameter. Given a distribu-
tion of the uncertainty parameter the evolution of the PDF of the quantities of interest
can be studied. To identify the regions that correspond to the propagation and the am-
plification of the input variance, the mean and variance fields of the quantities of interest
in physical space are constructed.

Let u(~x, t, ~ξ(ω)) be the output quantity of interest where ~ξ(ω) is the uncertainty param-
eter. {Ψk(~ξ(ω))}, k ∈ N∪{0} denotes a set of orthogonal polynomials, where N is set of
natural numbers. The orthogonality condition is expressed as

〈Ψi(~ξ),Ψj(~ξ)〉 = δij , (3.8)
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where δij is the Kronecker delta and 〈 · , ·〉 denotes the inner product with respect to
specific weights.

These weights depend on the choice of the polynomial basis, e.g. the weights are
uniform for Legendre polynomials and (1− x2)−

1
2 for the Chebyshev polynomials.

The polynomial chaos expansion (PCE) of the random quantity, u is given by

u(~x, t, ~ξ(ω)) =

∞∑

k=0

uk(~x, t)Ψk(~ξ(ω)) , (3.9)

where the {uk} are called the PCE coefficients. By the Cameron-Martin theorem, this
series converges in the L-2 sense. Thus, we can approximate u with a finite number of
terms:

u(~ξ) ≈
N∑

k=0

ukΨk(~ξ) , (3.10)

where the explicit dependences on ~x, t, and ω are dropped from the notation for com-
pactness. To approximate u, the coefficients can be computed by a projection using the
orthogonality property stated above:

uk = 〈u(~ξ),Ψk(~ξ)〉 . (3.11)

The evaluation of the inner products above requires a numerical integration because u
is not known at all ~ξ. There are two popular choices of numerical integration rules: Gauss
and Clenshaw-Curtis quadrature. The former is the most accurate in term of polynomial
exactness (ability to integrate exactly polynomial of a given order), whereas the latter
is more advantageous for practical applications because of its nestedness property, i.e
one can reuse the data from low-ordered estimates as part of the higher-ordered ones.
In this work, we choose Clenshaw-Curtis quadrature.

To summarize, we calculate the PCE coefficients from Eq. (3.11) by performing deter-
ministic numerical simulations corresponding to the quadrature abscissas. The results is
used for obtaining an approximation of u based on Eq. (3.10). The statistic of the output
can then be extracted.

Additionally, we selected the polynomial basis – Legendre polynomials – in the ap-
proximation corresponding to the input distributions fξ - uniform random variables so
that we can compute the mean and variance of u explicitly.

The mean, E(u), and the variance, Var(u), of u are obtained by

E(u) =

∫
ufξd~ξ ≈

N∑

k=0

uk

(∫
Ψkfξd~ξ

)
= u0 , (3.12)

E(u2) =

∫
u2fξd~ξ ≈

N∑

k=0

N∑

i=0

ukui

(∫
ΨkΨifξd~ξ

)
=

N∑

k=0

u2k , (3.13)

Var(u) = E(u2)− E(u)2 =
N∑

k=1

u2k. (3.14)
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FIGURE 4. Interface evolution. Rows from top to bottom: i) density plots showing the initial condi-
tions of the bubble, ii) |ρ| showing the interface location at 245 µs after the shock impact, iii) |ρ| at
427 µs after the shock impact. The left three columns are the individual cases under fair

in ∈ [0, 1],
from left to right: i) fair

in = 0, ii) fair
in = 0.5, iii) fair

in = 1. The right two columns are the collocated
results, from left to right: i) mean of density, ii) variance of density.

4. Results and discussions
The results are presented and discussed according to the two qualities of interest,

namely the interface evolution and the total vorticity.

4.1. Interface evolution

The interface evolution of the two extreme cases in the range of the uncertainty parame-
ter of the gas inhomogeneity, fairin ∈ [0, 1], and of the middle case are shown in the three
leftmost columns in Fig. 4. The collocated results, namely the plot of the mean and the
variance of density are shown in the two rightmost columns in the same figure.

The uncertainty quantification measures the statistic of the quantities of interest due
to the uncertainty in the initial condition. The mean position of the interface location and
locations of maximum variance at different time instants can be studied as shown in
Fig. 4.

As can be seen in Fig. 4, under the uncertain parameter fairin the location of the max-
imum variance is near the vortex at late times. This is consistent with the comparison of
individual deterministic cases (see fairin = 0 and fairin = 1 in Fig. 4) where the interface
roll-ups and evolutions are different due to different gradients of gas inhomogeneity. The
main difference of asymmetrical flow patterns in the streamwise direction is shown by
the variance in interface evolution by the collocated results. In contrast, the maximum
variance of the interface evolution under the uncertainties e and fairmass is near the jet
location [1] (The impinging air into the helium bubble along the streamwise axis).

When we replot the variance of density in log-scale as shown in Fig. 5, it can be seen
that the variance in the initial condition is transported and amplified to later times.
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FIGURE 5. Variance in interface evolution. The variance of density plotted in log-scale at three
time instants, from left to right: i) initial condition, ii) at 245 µs after the shock impact, iii) at 427 µs
after the shock impact.
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FIGURE 6. Total vorticity. Left: individual cases under fair
in ∈ [0, 1], dashed line – fair

in = 0, solid
line – fair

in = 0.5, dotted line – fair
in = 1. Right: collocated results, solid line – mean of Γ, dashed

line – variance of Γ.
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FIGURE 7. PDF of total vorticity as a function of time.

4.2. Total vorticity

The total vorticity of the two extreme cases in the range of the uncertainty parameter of
the gas inhomogeneity, fairin ∈ [0, 1], and of the middle case are shown on the left hand
side in Fig. 6. The collocated results, namely the mean and the variance of the total
vorticity are shown on the right hand side in the same figure.

The evolution of the PDF of total vorticity as a function of time is shown in Fig. 7.
The vorticity generation in a shock-bubble interaction can be divided into different

stages with respect to time, and in the early times the primary vorticity deposition is
the main mechanism in vorticity generation. The primary vorticity deposition is mainly
based on baroclinic vorticity generation, which is due to the misalignment of the pressure
gradient and the density gradient when the shock traverses the bubble [9]. As in our
air-helium shock-bubble interaction, the baroclinic vorticity generation occurs from t =
0− 60µs as the shocks sweeps through the windward side of the bubble.
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FIGURE 8. Total vorticity under other uncertainty parameters [1]. Left: individual cases under
fair
mass ∈ [5.87%, 48.38%]: dashed line – fair

mass = 48.38%, solid line – fair
mass = 28.45%, dotted line

– fair
mass = 5.87%. Right: individual cases under e ∈ [−0.5,+0.5]: dashed line – e = −0.5, solid

line – e = 0, dotted line – e = +0.5.

First, under the uncertainty parameter fairin , the statistic of the total vorticity is ob-
tained and it can be seen that the variance of total vorticity increases from t = 0− 60µs
and maintains approximately the same magnitude thereafter, as shown in Fig. 6. The
corresponding PDF evolution of the total vorticity is shown in Fig. 7.

Second, when we compare the total vorticity under different uncertainty parameters,
the initial condition of the bubble varies and thus the baroclinic vorticity generation also
differs. For fairmass, as shown in Fig. 8, the different amounts of air in the bubble in the
range of fairmass results in different density gradients, and the rates of baroclinic vorticity
generation are therefore different. The increase of total vorticity also bottoms out at
different time instants in the range of fairmass. For e, as shown in Fig. 8, the pressure
gradient and the density gradient are the same in the range of e, but the misalignment
of the gradient differs slightly due to the elliptical curvature. However, the difference in
the misalignment of the gradients in the range considered does not have a significant
effect on the rates of baroclinic vorticity generation. They are almost indistinguishable
up to t =∼ 50µs. The main difference in the baroclinic vorticity generation is actually
the streamwise extension of the bubble, where for an elliptical bubble with its major
axis along the streamwise direction (e = +0.5), there is a longer length for baroclinic
vorticity generation and thus a higher total vorticity. For fairin , as shown in Fig. 6, the rate
of baroclinic vorticity generation is found to be higher for a higher gas inhomogeneity
(along the spanwise direction), where the total amount of air in the bubble remains
the same in the range fairin . Based on the extreme case under fairin where a maximum
gas inhomogeneity is assumed, when we go further to study the cases in which the
gradient of gas inhomogeneity changes to streamwise (+ve and -ve) direction, the rate
of baroclinic vorticity generation exhibits a combined behavior as shown in Fig. 9.

5. Conclusions
We have extended our previous uncertainty quantification study on shock-bubble in-

teractions to a new uncertainty parameter, namely the inhomogeneity of the contaminat-
ing gas in the bubble. The statistic of the interface evolution and total vorticity under this
new uncertainty parameter is obtained and discussed. The vortex position of the rolled-
up bubble is found to be the region of the maximum variance of density and the variance
in the initial bubble is found to be transported and amplified as the interface evolves. The
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FIGURE 9. Total vorticity under different directions of the gas inhomogeneity gradient. Dashed
line – gas inhomogeneity gradient pointing streamwise direction (+ve), solid line – gas inhomo-
geneity gradient pointing spanwise direction, dotted line – gas inhomogeneity gradient pointing
streamwise direction (-ve).

results of the new uncertainty parameter are compared with those of other uncertainty
parameters studied in our previous work, and the baroclinic vorticity generation under
different initial bubble conditions is discussed. As compared with the analytical and nu-
merical analysis of baroclinic vorticity production for a homogeneous circular bubble in
shock-bubble interaction in reference literature, the baroclinic vorticity generation during
the vorticity deposition phase is found to be largely dependent on the gas inhomogene-
ity inside the bubble and the windward length of the bubble when uncertainties of the
initial bubble condition are present.
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