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An intrusive stochastic projection method for two-phase time-dependent flows subject
to uncertainty is presented. Numerical experiments are carried out assuming uncer-
tainty in the interface location, but the framework generalizes to uncertainty with known
distribution in other input data. Uncertainty is represented through generalized wavelet
chaos expansion, and the system obtained from stochastic Galerkin projection is dis-
cretized in space with finite volume methods and flux limiting. The result is a robust
solver that performs well for problems with sharp variation and discontinuities in the
stochastic dimension. Experiments are assuming uncertainty in the interface location,
but the framework generalizes to uncertainty with known distribution in other input data.

The numerical discretization of the governing equations is based on a generalization
of the HLL flux, and have many properties in common with its deterministic counterpart.
It is simple and robust, and captures the statistics of the shock. In a manner similar to
the deterministic HLL solver, it does not capture the contact discontinuity, leading to an
underestimate of the variance of the contact discontinuity.

1. Introduction

Physical models in computational fluid dynamics are often extended with stochastic
models to represent uncertainty in governing equations or input parameters, including
e.g. boundary and initial conditions, geometry and rates of reaction, diffusion and advec-
tion. One can distinguish between nonintrusive methods, where existing deterministic
codes are run with a range of input values, and intrusive methods, where the problem is
reformulated in a fashion that results in a modified problem that is larger than the orig-
inal deterministic problem, but only needs to be solved once for the full solution of the
stochastic problem. The increased complexity of the reformulated problem has the po-
tential to reduce the computational cost compared to that of nonintrusive methods, such
as Monte Carlo methods, that require numerous deterministic solutions, or stochastic
numerical integration methods that require deterministic code solutions, evaluated at
quadrature points in the stochastic dimension.

A stochastic two-phase problem in one spatial dimension is investigated as a first
step towards developing an intrusive method for e.g. shock-bubble interaction with ge-
neric uncertainty in the input parameters. So et al. [1] investigated a two-dimensional
two-phase problem subject to uncertainty in bubble deformation and contamination of
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the gas bubble, based on the experiments of [2]. The eccentricity of the elliptic bub-
ble and the ratio of air-helium of the bubble were assumed to be random variables,
and quantities of interest were obtained by numerical integration of the stochastic range
(stochastic collocation). The problem selected here is inspired by this physical problem,
and although we only study a one-dimensional problem, the future goal is to provide a
formal comparison between the algorithm developed here and the non-intrusive tech-
nigues in [1].

We assume uncertainty in the location of the material interface, which requires a
stochastic representation of all flow variables. Stochastic quantities are represented as
generalized chaos series, that could be either global as in the case of generalized poly-
nomial chaos [3], or localized, see e.g. [4]. For robustness, we use a generalized chaos
expansion with Haar wavelets to represent the solution in the stochastic dimension [5].
It should be noted that this basis is global, so the method is fully intrusive. However,
the basis is hierarchically localized in the sense that wavelets belonging to the same
resolution level have non-overlapping support. These features makes it suitable for ap-
proximating discontinuities in the stochastic space without the oscillations that occur in
the case of global polynomial bases.

The stochastic Galerkin method is applied to the stochastic two-phase formulation,
resulting in a finite-dimensional deterministic system that shares many properties with
the original deterministic problem. We assume that the stochastic Galerkin problem is
hyperbolic. This generalized and extended two-phase problem is solved with the HLL-
flux and MUSCL-reconstruction in space, and fourth order Runge-Kutta integration in
time. The minmod flux limiter is employed in the experimental results displayed below.

2. Representation of uncertainty

The polynomial chaos framework for uncertainty quantification introduced by [6] and
generalized by [3] is used to represent uncertainty in the input parameters of the gov-
erning equations.

Let w be an outcome of a probability space (12, A, P), with event space 2, o-algebra
A, and probability measure P. Let £ = {¢;(w)}}L, be a set of N i.i.d. random variables
for w € Q. Each random variable ¢; is a mapping from the event space to R. For the
cases presented here, N = 1 i.e. a single source of uncertainty is assumed but the
framework can be generalized to multiple sources of uncertainty.

Consider a generalized chaos basis {¥;(£)}:2, spanning the space of second order
(i.e. finite variance) random processes on this probability space. The basis functionals
are assumed to be orthonormal,

(Wi ;) = bij,
where §;; is the Kronecker delta and the inner product of a(¢{(w)) and b(¢(w)) is defined
by

(a(§(w)b(E(w))) :/Qa(f(w))b(ﬁ(W))dP(W)

Second order random fields u(z, t,£) can be expressed as
ulw, t,6) =y uila, ) Ti(€). (2.2)
i=0

Independent of the choice of orthogonal basis {¥;}:°,, we can express mean and vari-
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ance of u(z,t,¢) as

E(u(z,t,£)) = ug(x, t)
and

Var(u(z,t,£)) = Z u;(z,t)?,
i=1

respectively.
In the stochastic Galerkin projection, (2.1) is truncated to a finite number P terms,
and we set
P-1

U(I,t,g) ~ UP(I,t,E) = Z UZ(Iat)\Pl(f)

=0

The approximate solution u” converges to the exact solution u as P — oo in the L,
norm.

Hyperbolic problems exhibit sharp gradients and shocks, for which polynomial rep-
resentations are prone to fail, see e.g. [7, 8]. For robustness, localized wavelet basis
functions are used. Consider the mother wavelet function defined by

1 0<y< %
YWy =4 -1 L<y<l . (2.2)
0 otherwise

Based on (2.2) we get the wavelet family
W) =22 ( 2y —k),  j=01,.; k=0,..,2""

Given the probability measure of the basis functional variable ¢ with cumulative density
function F¢, define the basis functions

Wik(€) = U (Fe(€))
Adding the basis function Wy (y) = 1 in y € [0, 1] and concatenating the indices j and &
into i = 27 + k, we can represent any second order random variable u(z,t, &) as

o0

u(z, t,&) = Zui(%t)Wi(f),

=0

which is the form (2.1). For a more detailed exposition of Haar chaos representation, we
refer to [9].

3. Two-phase flow problem

We assume two phases with volume fractions « and 3 on the domain z € [0,1],
governed by the advection equation

—a+ vza = (3.1)
z
B=1-a, (3.2)
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where v is the advective velocity. The Euler equations determine the conservation of
masses ap, and Bpg, momentum pv, and total energy £ of the two phases through

QP Qapav
0 0
9| Bps v BéOﬁv =0, (3.3)
ot | pv or | pv°+p
E (E +p)v
We assume pressure p given by the perfect gas equation of state
- E— %pv2
,Yaoil + ,y,(iﬁi—l ’
and investigate the Riemann problem defined by the initial condition

r | (1,0, 1,0, 0, 25)7 x <05+ 0€
(@, B, apa, Bps, pv, E) _{ (0, 1, 0, 0.125, 0, 0.25)7 2> 0.5+ ¢

where o = 0.05, and £ € U[-1, 1].

The stochastic Galerkin formulation of the two-phase problem is obtained by multiply-
ing (3.1) and (3.3) by each one of the basis functionals ¥,(¢) and the weight function
of &, and integrating the product over the range of &. Initial functions are obtained by
projection of (3.4) onto the basis functionals ¥;(¢). Truncating the order of generalized
chaos to P, we get the systems

(3.4)

0 "0
S0kt ZZW%@N%\I@%) =0 (3.5)
i=0 j=0
Br = Oko — ax, (3.6)
and
P P
(pa)k Zz;o Z%'D:O(apa)ivj (U W)
9| (Bps)k n 9 > im0 2j=0(Bpp)ivi (¥ ¥; ¥y) —0 3.7)
ot | (pv)s D | S oo (p)ivy (Wi, W) + pi, ’
B S0 o (B 4 pa)uy (W ¥, W)

for K = 0, ..., P. Generalized chaos expansions for e.g. the pressure can be updated
from the chaos expansions of the conservative variables, and then be plugged into the
fluxes.

Despite the seemingly simple nature of the initial condition, the generalized chaos
series of the initial condition has an infinite number of non-zero terms. Thus, stochastic
truncation error is an issue already at ¢ = 0.

4. Numerical method

MUSCL-type flux limiting [10] is used for the reconstruction of the left and right states
of the flux. For the advection of the volume fractions, Roe’s flux is used, and fourth-order
Runge-Kutta is used for the time integration. For the conservative problem (3.3), we use
the HLL Riemann solver introduced by Hartenet al. [11],

fr if0<Sp
SrfL—SLfr+SLSrR(Ur=UL)
RJL L nggLR R L |fSL§0§SR

fr if0> Sk

Furp =

)



An Intrusive Method for Two-Phase Flow under Uncertainty 49

0.\\ ’0\\\\" “\

\\\0\\\\
N ‘\0.. \ 0\\ N

AR
“‘}\\\ 0‘}\\“‘\

(a) Computed density, 8 wavelets. (b) Exact density.

FIGURE 1. Density as a function of x and £, t = 0.15.

where S denotes the fastest signal velocities. These are taken as estimates of the maxi-
mum and minimum eigenvalues of the Jacobian of the flux. In the deterministic case, the
eigenvalues of the Jacobian are known analytically, so the method is inexpensive. For
the stochastic Galerkin system, analytical expressions are not available, and numerical
approximations of the eigenvalues are used instead.

The HLL-flux approximates the solution by assuming three states separated by two
waves. In the deterministic case, this approximation is known to fail in capturing contact
discontinuities and material interfaces [12]. The stochastic Galerkin system is a multi-
wave generalization of the deterministic case, and similar problems in capturing missing
waves are expected. However, the robustness and simplicity of the HLL-solver makes it
a potentially more suitable choice compared to other Riemann solvers that are theoreti-
cally more accurate, but also more sensitive to ill-conditioning of the system matrix.

5. Results

The exact solution of the test problem is known analytically for any given value of the
stochastic variable £. Thus, we can obtain the exact statistics to arbitrary accuracy by
averaging the exact Riemann solutions over a large number of realizations of &.

Figure 1 shows the density at ¢ = 0.15, computed by the stochastic Galerkin method
(left) and the exact solution (right). Quantities of interest, e.g. means and variances
can be computed from the stochastic Galerkin solution. The solution does not converge
pointwise in £, but Fig. 1 gives an indication about what can be expected from quantities
of interest that result from integration over £. For instance, the smearing (in space) of
the contact surface is visible and would not vanish with refinement of the stochastic
space. The dissipative effect is due to the spatial discretization, i.e. the HLL flux. Figure
2 depicts the convergence of the density with the order of generalized wavelet chaos.
Higher resolution in the stochastic dimension does not change the resolution in space.

Figure 3 shows that the stochastic Galerkin method effectively captures the expec-
tations of the variables. However, the variances are not as accurately captured as the
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(a) Density, P = 2. (b) Density, P = 4. (c) Exact density.

FIGURE 2. Convergence of density with order of wavelet chaos, ¢t = 0.2, 0 = 0.2.
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FIGURE 3. Means at ¢t = 0.15, m = 200 grid points, 8 wavelets.

expectations, see Fig. 4. The reason and possible remedies for the underestimate of the
variances will be discussed below.

The stochastic Galerkin method uses similar flux functions and flux limiters as the
deterministic solver. Therefore, the stochastic Galerkin solution and Monte Carlo simu-
lation, which are constructed as a weighted ensemble of deterministic solutions, suffer
from similar problems in terms of convergence to the exact solution. As can be seen in
Fig. 5(a), the numerical method underestimates the variance corresponding to uncer-
tainty in the location of expansion region and contact discontinuity of the density. It is
well-known that the HLL-flux fails to capture the contact discontinuity for the determinis-
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FIGURE 4. Variances at t = 0.15, m = 200 grid points, 8 wavelets.

tic case, and this also holds for the stochastic Galerkin problem. With increasing order
of wavelet chaos, the stochastic Galerkin solution converges to statistics that are not
equal to those of the exact solution. The same is true for Monte Carlo simulations with
the deterministic HLL-solver.

Figure 6 shows that the convergence of variance and expectation of density in the
discrete lo-norm becomes saturated both for Monte Carlo simulations, Fig. 6(a), and
the stochastic Galerkin method, Fig. 6(b). Each of the deterministic solves introduces
an error in the Monte Carlo simulation. The error of a single deterministic solution, the
density at t = 0.15, is shown in Fig. 7. This error is accumulated and averaged in Monte
Carlo simulations, resulting in a bias in the statistics of interest.

5.1. Computational cost

The computational cost of the stochastic Galerkin method increases exponentially with
the order of wavelet chaos. Figure 8(a) shows the exponentially increasing computa-
tional cost for different orders of wavelet chaos expansion, relative to the cost of a zeroth
order wavelet chaos expansion. As a qualitative comparison, Fig. 8(b) shows the cost
of Monte Carlo simulation as a function of the number of samples, relative to a single
deterministic simulation. Due the exponential growth in computational time with the or-
der of chaos expansion, uncertainty representations with coefficients with fast decay are
essential to make larger problems computationally feasible. Long-time integration would
require a time-adaptive generalized chaos basis to capture the transition of the probabil-
ity density of the flow. Another possible means to achieve reduced computational cost is
to discretize the stochastic domain (stochastic multi-elements) to decouple the system
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FIGURE 5. Convergence of variances with order of wavelet chaos.
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FIGURE 6. Comparison of errors between Monte Carlo and wavelet chaos solutions.

matrix. A low-order stochastic Galerkin method could be used for each element of the

stochastic space separately.
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FIGURE 8. Computational cost for wavelet chaos and Monte Carlo simulation.

6. Conclusions

The stochastic Galerkin solver shares qualitative features of the deterministic Rie-
mann solver with HLL flux, of which it is a direct generalization. It suffers from the in-
ability of the deterministic flux function to capture the contact discontinuity. Although the
initial function was chosen to decay only slowly with the order of generalized chaos,
in the present formulation, higher-order wavelet chaos would not decrease the error in
computed statistics. Instead, a more accurate flux function - yet robust enough not to
fail due to singularity of system matrices - is needed to increase the numerical accuracy
and decrease the error. To this end, a solver that captures the material interface, e.g. a
stochastic Galerkin generalization of the HLLC flux or the HLLE flux, and the expansion
fan, will be required, see e.g. [13, 14].

For problems with multiple sources of uncertainty, the exponential growth of the com-
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putational cost with the stochastic dimension is an issue. However, problem specific and
time-dependent stochastic basis functions can be used to get an accurate uncertainty
representation in relatively few chaos expansion terms for each stochastic dimensions.
For a moderate number of sources of uncertainty, we believe that stochastic multi-phase
problems are computationally feasible up to the accuracy of the numerical flux function.
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