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In the present work, the problem of coupling multiple physical phenomenon in a finite
element framework with an interface between two or more non-conforming meshes is
considered. Recently the research group at the Institute for Computational Mechanics,
Technische Universität München has developed a dual mortar method of monolithic
coupling for fluid structure interactions (FSI) involving incompressible fluid. The research
group at the Center for Aerospace Structures, University of Colorado at Boulder has
developed a residual based method of monolithic coupling that includes FSI, as well as
fluid thermal coupling including nonlinear surface effects such as ablation. Both methods
take advantage of the benefits of solving a monolithic system which is of the same size
as the uncoupled system and does not include Lagrange multipliers in the final system.
One of the primary benefits of this is the ability to use well developed iterative linear
solvers. The goal of this summer research is to combine the capabilities of both research
groups so as to extend the dual mortar method to include compressible FSI problems
and fluid thermal interactions with nonlinear surface affects.

1. Introduction
The numerical simulation of multi-physics phenomena is of particular interest in high

speed aerodynamic applications. High speed flow environments such as supersonic
aircraft and re-entry vehicles can have complex aerodynamic flows, significant thermal
heating, to include phase change and chemical ablation, as well as important elasto-
dynamic responses. There are several possible solution strategies to solve these tightly
coupled physics, including weakly coupled partitioned, strongly coupled partitioned, and
monolithic schemes. Partitioned schemes allow for the use of established field solvers
and are hence relatively simple to implement. However, in the context of shape and
topology optimization for aerodynamic problems, monolithic schemes make efficient
sensitivity analysis possible by taking advantage of a single discretization method and
one time integrator for all equations.

In general and also in [1], monolithic schemes are derived based on the assumption
of a conforming interface discretization, i.e. fluid and structure share a common interface
mesh. In these cases, enforcement of coupling conditions is straightforward, as in the
residual based method used by the group from University of Colorado. There are many
cases that one would like to deal with non-matching grids at the fluid-structure interface.
Most often different resolution requirements in the different physical domains or quite
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simply the presence of complex interface geometries make the creation of matching
fluid and structure meshes cumbersome or even impossible.

A possible remedy is provided by the mortar method, which has originally been in-
troduced in the context of non-overlapping domain decomposition [2]. A characteristic
feature of the mortar method is the imposition of interface constraints in a variation-
ally consistent manner based on Lagrange multipliers. This approach has seen a great
thrust of research over the past decade. New fields of application such as finite deforma-
tion contact analysis [3–7] have been established and the mathematical understanding
concerning the choice of adequate discrete Lagrange multiplier spaces has been deep-
ened [8–11].

To overcome the numerical issues of the standard mortar method discussed above for
both partitioned and monolithic coupling schemes, the research group from Technische
Universität München has employed a so-called dual mortar method [8–12] with discrete
Lagrange multipliers that are constructed based on a bi-orthogonality relation with the
primal shape functions at the fluid-structure interface. In contrast to standard mortar
methods, the dual mortar approach allows for an elimination of the additional degrees
of freedom by condensation at negligible computational cost in the monolithic setting.
This ensures that there are only non-zero diagonal entries in the global system matrix
and hence the applicability of efficient iterative solvers.

The goal of the collaboration on this research is to extend the dual mortar method
developed by Prof. Wall’s research group to include compressible flow, fluid-thermal
interactions, and non-linear surface effects such as wear and ablation. Currently the
dual mortar method is implemented for only incompressible flows. This is more straight
forward as the flow field is solved for unknown velocities which have a linear relationship
to the structural displacements. For compressible flow, formulated in conservative form,
density, momentum, and density times total energy are the unknowns, making for a
nonlinear relationship between the structural temperature and the fluid unknowns as
well as the structural displacements and the fluid unknowns.

The remainder of this article is organized as follows: The next section briefly intro-
duces the governing equations as well as the weak forms. In Sec. 3 the dual mortar
method is explained in detail in the context of incompressible FSI problems, starting with
the discretization in space and time. The obtained nonlinear equations are linearized.
The last part of this section introduces the resulting monolithic system of equations. The
condensed linear monolithic systems are deduced in Sec. 4 depending on the choice
of master and slave discretization at the interface. In both cases the field of Lagrange
multipliers is eliminated from the system.

2. Problem definition
Fluid, structure, and thermal interaction problems can formally be described as seven

field problems. There are three physical fields, fluid, structure and temperature. To ac-
count for deformations of the fluid field, an arbitrary Lagrangian-Eulerian (ALE) approach
is employed, constituting a fourth, non-physical mesh field later also called ALE field.
The thermal and/or structural field can have similar deformations due to non-linear sur-
face effects such as ablation or wear and therefore an additional fifth non-physical ALE
field for the thermal/structural field is used. Fluid-structure and fluid-thermal share a
common interface Γ, but not necessarily a common finite element discretization of this
interface. Therefore, coupling conditions are applied in a weak sense, which introduces
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two more fields of Lagrange multipliers λ at Γ, one each for structural coupling and
thermal coupling.

In this section we briefly present the governing equations of the fluid field defined on
a deformable domain, the structure field and the thermal field defined on a deformable
domain. The additional terms due to the weak coupling of the fields at the interface are
also discussed.

In the following, fluid quantities are denoted by the superscript ·F, quantities of the
mesh (or grid) field by ·G, and finally those of the structure field by ·S.

2.1. Fluid

The present work is to extend the dual mortar method to include compressible Navier-
Stokes equations for a Newtonian fluid on a deformable fluid domain ΩF. The unknown
fluid domain deformation dG is defined by a unique mapping ϕ given by

dG(x, t) = ϕ
(
dG
Γ ,x, t

)
in ΩF × (0, tf ), (2.1)

based on the mesh interface displacement dG
Γ , that will later be related to the struc-

ture interface displacement dS
Γ. This mapping (2.1) is arbitrary and defines the domain

velocity uG by

uG =
∂ϕ

∂t
in ΩF × (0, tf ), (2.2)

which has to match the fluid velocity uF
Γ at the interface Γ, i.e.

uF
Γ = uG

Γ in Γ× (0, tf ). (2.3)

Equation (2.2) allows for the definition of the ALE convective velocity c = uF − uG,
representing the fluid velocity relative to the arbitrarily moving fluid domain. The Navier-
Stokes equations of the fluid field hence read

∂ρF

∂t
+∇ ·(ρF c) = Sc, (2.4)

∂ρuF

∂t
+ c ·∇(ρuF) = ∇ ·σF + Sm, (2.5)

σF = µ(∇uF + (∇uF)T ) + λ(∇ ·uF − p)I, (2.6)

∂ρE

∂t
+∇ ·(ρEc) = ∇ ·(σFuF) +∇ ·(κF

∇TF ) + Se, (2.7)

and are valid in ΩF × (0, tf ), where fluid density ρ, fluid momentum ρuF, and total con-
servative energy ρE are unknown. To close this set of equations, the present work uses
the ideal gas law to calculate the fluid pressure p and temperature TF . In the second
order fluid stress tensor, defined in Eq. (2.6), the bulk viscosity λ is defined as − 2

3µ
in the present work, with µ being the fluid viscosity, calculated using the Sutherland
model, and I being the second order identity matrix. The constant κF is the coefficient
of thermal conductivity for the fluid. Finally, Sc, Sm, and Se, are the source terms for the
conservation of mass, momentum, and energy respectively.

Boundary conditions at the Dirichlet boundary ΓF
D and the Neumann boundary ΓF

N can
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be stated as

ρF = ρ̄ in ΓF
D × (0, tf ), (2.8)

uF = ū in ΓF
D × (0, tf ), (2.9)

E = Ē in ΓF
D × (0, tf ), (2.10)

σF · n̂F = h̄F in ΓF
N × (0, tf ), (2.11)

κF
∇TF · n̂F = q̄F in ΓF

N × (0, tf ). (2.12)

To state the complete initial boundary value problem the unknowns must be given an
initial value ρF (x, 0) = ρF0 (x), ρu

F(x, 0) = ρuF
0 (x), and ρE(x, 0) = ρE0(x) for x ∈ ΩF.

The weak form of the compressible Navier-Stokes equations (2.4) - (2.7) is obtained
by testing these equations with test functions δρF , δρuF, and δρE for the conservation
of mass, momentum, and energy respectively. Then integrating by parts the momentum
and energy equations and taking into account that the fluid velocity at an FSI boundary
is zero for a no-slip condition results in,

0 =

(
δρF ,

∂ρF

∂t
+∇ ·(ρF c)− Sc

)

ΩF

(2.13)

0 =

(
δρuF,

∂ρuF

∂t
+ c ·∇(ρuF)− Sm

)

ΩF

+

(
∇ ·δρuF,σF

)
ΩF −

(
δρuF, h̄F

)
ΓF
N

+ δWFm
Γ (2.14)

0 =

(
δρE,

∂ρE

∂t
+∇ ·(ρEc)− Se

)

ΩF

+

(
∇δρE,σFuF + κF

∇TF
)
ΩF −

(
δρE, q̄F

)
ΓF
N

+ δWFe
Γ (2.15)

where δWFm
Γ denotes a contribution of the FSI interface to the momentum equation

that will be deduced in Sec. 2.4 and δWFe
Γ denotes a contribution of the fluid thermal

interface interface to the energy equation that will be deduced in Sec. 2.5. The (, )ΩF

operator denotes an integral of the product over the domain ΩF.

2.2. Structure

In this work we assume a structure field governed by the nonlinear elastodynamics
equation

ρS
d2dS

dt2
= ∇ ·(FS) + ρSbS in ΩS × (0, tf ), (2.16)

that states an equilibrium between the forces of inertia, internal forces and an external
body force bS in the undeformed structural configuration ΩS. Given the structural den-
sity ρS defined per unit undeformed volume, Eq. (2.16) has to be solved for the unknown
structural displacements dS. The internal forces are expressed in terms of the second
Piola-Kirchhoff stress tensor S and the deformation gradient F.

Different constitutive relations can be employed in this context, but for the sake of
simplicity a hyperelastic material behavior with strain energy function Ψ is considered in
the remainder of this paper. The second Piola-Kirchhoff stress tensor S is thus defined
as

S = 2
∂Ψ

∂C
, (2.17)
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where the right Cauchy-Green tensor C = FTF has been introduced.
The boundary conditions defined on the Dirichlet boundary ΓS

D and on the Neumann
boundary ΓS

N read

dS = d̄S in ΓS
D × (0, tf ), (2.18)

(FS) ·N = h̄S in ΓS
N × (0, tf ), (2.19)

Given initial displacements and velocities dS
0(x) and ḋS

0(x), respectively, the initial bound-
ary conditions

dS(x, 0) = dS
0(x) for x ∈ ΩS, (2.20)

ddS

dt
(x, 0) = ḋS

0(x) for x ∈ ΩS, (2.21)

have to be additionally satisfied.
Testing (2.16) with the virtual displacements δdS and integration by parts yield the

weak form

0 =

(
δdS, ρS

d2dS

dt2

)

ΩS

+
(
∇δdS,FS

)
ΩS

−
(
δdS, ρSbS

)
ΩS −

(
δdS, h̄S

)
ΓS
N

+ δW Sm
Γ , (2.22)

which is the starting point for the finite element discretization. The influence of the in-
terface on the structure field is accounted for by δW Sm

Γ , which will be discussed in Sec.
2.4.

2.3. Thermal

For this work, it is assumed that the solid material does not change phase and that
the specific heat is constant. Based on these assumptions, the thermal field can be
described by the following equation,

ρSC
∂TS

∂t
+ ρSCuG ·∇TS −∇ ·κS

∇TS − St = 0 (2.23)

where TS is the unknown temperature field of the structure, C is the specific heat con-
stant, κS is the thermal conductivity tensor, which can reduce to a single constant for
an isotropic material, and St is the source term. The term including the mesh velocities,
uG, is an ALE correction for the advection of material due to mesh motion. This is the
case in such phenomena as ablation and wear.

Boundary conditions at the Dirichlet boundary ΓT
D and the Neumann boundary ΓT

N can
be stated as

TS = T̄ in ΓS
D × (0, tf ), (2.24)

κS
∇TS · n̂S = q̄ in ΓS

N × (0, tf ). (2.25)

To state the complete initial boundary value problem the temperature field must be given
an initial value TS(x, 0) = TS

0 (x) for x ∈ ΩS. The thermal equation can then be made
weak by multiplying it with δTS and integrating by parts, yielding

0 =

(
δTS , ρSC

∂TS

∂t
+ ρSCuG ·∇TS − St

)

ΩS

+

(
∇δTS ,κS

∇TS
)
ΩS −

(
∇δTS , q̄

)
ΓS
N

+ δWSe
Γ . (2.26)



144 J. Westfall, K. K. Maute, T. Klöppel, A. Popp, M. Gitterle & W. A. Wall

2.4. Fluid-Structure Interface

Coupling of the different fields is realized by enforcing kinematic and dynamic constraints
at the fluid-structure interface Γ. Usually, the no-slip boundary condition

∂dS
Γ

∂t
= uF

Γ in Γ× (0, tf ) (2.27)

is applied, which prohibits both a mass flow across and a relative tangential movement of
fluid and structure at the fluid-structure interface. In combination with (2.3) this condition
(2.27) is equivalent to

dS
Γ = dG

Γ in Γ× (0, tf ) (2.28)

stating that structural deformation and fluid movement (represented by the ALE based
fluid domain deformation dG

Γ ) must match on Γ. In addition, equilibrium of forces requires
the surface tractions of fluid and structure to be equal, yielding

hS
Γ = −hF

Γ in Γ× (0, tf ), (2.29)

where h is the unknown surface traction at the interface.
In preparation of the mortar finite element discretization to follow, the method of

weighted residuals is applied to the interface conditions. By introducing the Lagrange
multiplier field λ and corresponding test functions δλ on the fluid-structure interface Γ,
we obtain the weak form

(
δλ,dS

Γ − dG
Γ

)
Γ
= 0. (2.30)

This adds an integral version of the continuity constraint (2.28) to the general problem
definition. Furthermore, the unknown surface tractions introduced in (2.29) have to be
imposed in a weak sense on the respective physical field, yielding the missing coupling
terms in fluid weak form (2.14) and structure weak form (2.22)

δWFm
Γ =

(
hF
Γ, δρu

F
Γ

)
Γ
, (2.31)

δW Sm
Γ =

(
hS
Γ, δd

S
Γ

)
Γ
. (2.32)

Identifying the Lagrange multiplier field λ with the unknown surface traction hS
Γ = −hF

Γ,
these coupling terms can be expressed as

δWFm
Γ = −

(
λ, δρuF

Γ

)
Γ
, (2.33)

δW Sm
Γ =

(
λ, δdS

Γ

)
Γ
. (2.34)

Thus, fluid-structure coupling is established in a weak sense, which formally leads to a
four field FSI system, not considering the thermal field.

2.5. Fluid-Thermal Interface

The fluid thermal interface requires that there not be a jump in temperature and heat
fluxes across the boundary must be satisfied as shown in the following equations,

T S
Γ = TF

Γ in Γ× (0, tf ), (2.35)

κS
∇TS · n̂S = −κF

∇TF · n̂F in Γ× (0, tf ). (2.36)

In the case where there is material advection due to non-linear surface effects, an ALE
formulation is used for the thermal field and Eqs. (2.27) and (2.28) must be modified
to include the mesh displacements due to these effects. The work during this research
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project has not yet addressed the fluid thermal interactions, particularly for the case of
a thermal ALE formulation. This is however part of the planned future work.

The remainder of this report will focus on the dual mortar method. The presentation
of the dual mortar method will be in the context of incompressible fluid structure inter-
action however. This is because in the incompressible Navier-Stokes equations veloci-
ties are the unknowns as apposed the momentum unknowns in the conservative form
of the compressible Navier-Stokes equations. This is much simpler as the relationship
between the fluid velocities and the mesh displacements is linear, where as the relation-
ship in the compressible versions is dependent on multiple unknowns and therefore the
condensation of the system is non-trivial.

3. Finite element discretization and mortar coupling
The field equations are discretized in space and time, but the actual discretization

is of little importance for the monolithic approach presented here. In general, we use
implicit time integration schemes and finite elements for fluid, ALE and structure fields,
leading to a set of nonlinear algebraic equations. The interface conditions are enforced
using a dual mortar method, augmenting the system of equations with a fourth field.
The complete nonlinear FSI problem is solved using a Newton-type method, where a
set of corresponding linearized equations has to be solved in every iteration step of the
algorithm.

Note that the equivalence of (2.27) and (2.28) only holds in the continuous setting. In
the discrete setting, one of these two equations may not be satisfied exactly, if different
time integration schemes are used for the different fields. This effect, which is well-
known in fluid-structure interaction, can usually be considered negligible. Since it is also
neither connected to monolithic coupling schemes nor to the mortar approach proposed
here, a detailed investigation is not carried out in the present contribution.

In the following the resulting sets of linearized equations for fluid and structure are
briefly introduced. The derivation of the interface equations is shown in more detail.
Finally, the complete linearized FSI system is stated.

3.1. Fluid

In the applications shown here, stabilized finite elements are used to discretize the fluid.
Stabilization terms are applied to account for instabilities arising from equal-order dis-
cretization of fluid and pressure fields as well as for convection-dominated problems.
For details on the finite element discretization of the fluid field and stabilization methods
we refer e.g. to [13], to the monograph [14] or to the review article [15].

For time discretization a one-step-θ scheme or a BDF2 scheme are used. Both in-
tegration schemes assume a constant acceleration within a time step, although they
approximate its value differently. This implies a second order discretization of the inter-
face velocity yielding

d
G,n+1
Γ = d

G,n
Γ +

∆t

2

(
u
F,n+1
Γ + u

F,n
Γ

)
, (3.1)

where we have used the fact, that grid and fluid velocities match at the interface accord-
ing to (2.3). In (3.1), dG,n and uF,n denote the vector of discrete nodal displacements
and velocities, respectively, in time step n. In the following the time step index may be
omitted to shorten the notation if not necessary for understanding.
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The Newton-type method used to solve the monolithic FSI system requires a consis-
tent linearization of the fluid residual fF = fF(uF,pF,dG) that represents the discretized
right hand side of the weak form of the conservation of momentum for an incompressible
fluid. The total residual differential becomes

dfF =
∂fF

∂uF
duF +

∂fF

∂pF
dpF +

∂fF

∂dG
ddG. (3.2)

In the following the vector pF of nodal pressure values is dropped from the notation and
merged in the fluid’s interior unknowns uF

I . The split into quantities defined in the interior
of the domain (denoted by · I) and those defined on the interface (denoted by ·Γ) yields
the following matrix representation of the partial derivatives introduced in (3.2):

Fαβ =
∂fFα
∂uF

β

, FG
αβ =

∂fFα
∂dG

β

, (3.3)

with α, β ∈ {I,Γ}. For a detailed description of the fluid shape derivatives FG
αβ the reader

is referred to [16,17].
The Jacobian system for the Newton method can be formulated as

dfF

dxF
∆xF

i = −fFi (3.4)

where i ≥ 0 denotes the iteration step and xF the vector of unknowns of the fluid problem
including mesh deformations. In detail the fluid system of equations for time step n + 1
reads

[
FII FIΓ FG

II FG
IΓ

FΓI FΓΓ FG
ΓI FG

ΓΓ

]



∆u
F,n+1
I,i

∆u
F,n+1
Γ,i

∆d
G,n+1
I,i

∆d
G,n+1
Γ,i


 = (3.5)

−
[

f
F,n+1
I,i

f
F,n+1
Γ,i

]
−
[

0

f
F,n+1
λ,i

]
,

where f
F,n+1
λ,i accounts for the contributions of the unknown discrete Lagrange multiplier

on the traction at the interface and corresponds to (2.33).
The mesh movement is governed by (2.1) and we assume that discretization and

linearization result in an ALE system matrix A. Since the mesh movement is not allowed
to influence the physical solution at the interface, the set of linear equations reduces to

[
AII AIΓ

] [ ∆dG
I,i

∆dG
Γ,i

]
= 0. (3.6)

The mesh interface displacement increments ∆dG
Γ can now be substituted in terms

of the fluid interface velocity employing (3.1):

∆d
G,n+1
Γ,i =

{
∆t
2 ∆u

F,n+1
Γ,i +∆tuF,n

Γ for i = 0
∆t
2 ∆u

F,n+1
Γ,i for i > 0

. (3.7)

Applying (3.7) to (3.5) and (3.6) yields the final system of equations for fluid and ALE
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field



FII FIΓ + ∆t
2 FG

IΓ FG
II

FΓI FΓΓ + ∆t
2 FG

ΓΓ FG
ΓI

0 ∆t
2 AIΓ AII







∆u
F,n+1
I,i

∆u
F,n+1
Γ,i

∆d
F,n+1
I,i


 = −f̃

F,n+1
i . (3.8)

The modified fluid residual vector f̃F,n+1
i depends on the iteration step i:

f̃
F,n+1
i =




f
F,n+1
I,i

f
F,n+1
Γ,i + f

F,n+1
λ,i

0


+ χ(i)∆t




FG
IΓu

F,n
Γ

FG
ΓΓu

F,n
Γ

AIΓu
F,n
Γ


 , (3.9)

where we have introduced the mapping

χ(i) =

{
1, i = 0
0, i > 0

(3.10)

to shorten the notation.

3.2. Structure

As it is true for the fluid discretization, the algorithms discussed here are not restricted to
any specific discretization of the structure equations. We consider a discretization with
mixed/hybrid finite elements. Several countermeasures against various locking phenom-
ena are implemented, e.g. enhanced assumed strains (EAS), assumed natural strains
(ANS) or mixed formulations with additional degrees of freedom for a structural pressure.
Details about the finite element method for structure fields can be found in [18,19].

The generalized-α time integration scheme proposed in [20] has shown to be an effi-
cient and robust method for dynamic structure simulations. This scheme offers second-
order accuracy in combination with the possibility of numerical damping and is used in
the applications discussed in this work.

To derive the structure contributions to the FSI system we start with the right hand
side of the discretized weak form (2.22) denoted by the residual fS = fS(dS), where dS

is from now on the vector of discretized nodal displacements. The structure stiffness
matrix S is again split into interior quantities ( · I) and those defined on the interface Γ

Sαβ =
∂fSα
∂dS

β

, (3.11)

given α, β ∈ {I,Γ}. The complete linear system to be solved in every iteration step i of
the non-linear algorithm then reads

[
SII SIΓ

SΓI SΓΓ

] [
∆d

S,n+1
I,i

∆d
S,n+1
Γ,i

]
= −

[
f
S,n+1
I,i

f
S,n+1
Γ,i

]
−
[

0

f
S,n+1
λ,i

]
(3.12)

for time step n + 1. The contribution of the unknown Lagrange multiplier at the FSI
interface corresponding to (2.34) is denoted by f

S,n+1
λ,i .

3.3. Fluid-structure interface

Non-conforming finite element discretization brings about that fluid and structure sur-
faces at the FSI interface Γ do not match any more, as it has been the case in the
continuous setting and when using node-matching interface meshes. In the context of
the mortar method, this makes the choice of so-called slave and master sides Γsl and
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Γma necessary. The Lagrange multiplier field is then discretized on the slave side of the
interface and numerical integration of the coupling terms is also performed there.

3.3.1. The dual mortar method

For making the following derivations more general, we introduce the displacement
fields dsl

Γ and dma
Γ and derive the dual mortar method as an abstract coupling strategy

for two non-conforming meshes. Of course, a concrete choice of fluid or structure field
being the slave side has to be made when using this approach within the proposed
FSI framework. This choice and its effect on the monolithic FSI schemes presented
here will be investigated in Sec. 4. The general form of slave and master displacement
interpolation reads

dsl
Γ =

nsl∑

k=1

N sl
k d

sl
k , dma

Γ =

nma∑

l=1

Nma
l dma

l , (3.13)

where shape functions N sl
k , Nma

l are obtained based on their trace space relationship
with the underlying discretizations of the domains ‘behind‘ the mortar interface (in this
context fluid and structure domains). Nodal displacements are represented by dsl

k , dma
l .

The total number of slave and master nodes is given by nsl and nma, respectively.
Within the dual mortar method considered here, the Lagrange multiplier interpolation

on the slave side of the interface is based on so-called dual shape functions Φj as

λ =
nsl∑

j=1

Φjλj , (3.14)

with discrete nodal Lagrange multipliers λj . The dual shape functions are constructed
such that a biorthogonality condition, as introduced in [10,11,21], is satisfied, yielding

∫

Γsl

ΦjN
sl
k dΓ = δjk

∫

Γsl

N sl
k dΓ, (3.15)

where δjk is the Kronecker delta. Note that (3.15) demands an evaluation of shape
function integrals on the actual (possibly distorted) surface element geometry in the ref-
erence configuration. Therefore, an a priori definition of dual shape functions is not pos-
sible in general, but these ansatz functions for Lagrange multiplier interpolation become
element-specific. Figure 1 exemplarily shows (standard) displacement shape functions
and (dual) Lagrange multiplier shape functions for a 3-node triangular and for an undis-
torted 4-node quadrilateral surface element. For a more detailed overview and exem-
plary local calculations of element-specific dual shape functions for 3D mortar coupling,
we refer to [4,8,22].

Furthermore, a modification of the Lagrange multiplier interpolation at so-called cross-
points, where more than two subdomains with non-matching grids meet, becomes nec-
essary. The same is true for interface edges where Dirichlet boundary conditions are
prescribed. In simple terms, this modification is based on removing the discrete La-
grange multipliers from the affected points or edges to avoid over-constraint. However,
the constant value interpolation property must be retained throughout this process, as
visualized for the 2D dual mortar case in Fig. 2. Further details of such modifications
can be found in [9,11].

For the sake of clarity, we temporarily ignore the weak continuity condition (2.30)
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(a) 3-node triangular surface ele-
ments

(b) undistorted 4-node quadrilateral
surface elements

FIGURE 1. Exemplary shape functions N1(ξ, η) and dual shape functions Φ1(ξ, η).

FIGURE 2. Dual shape functions Φj for 2D mortar coupling with modifications to allow for cross–
points or Dirichlet boundary conditions. The two end nodes 1 and 7 do not carry discrete Lagrange
multipliers in this case.

already derived for the concrete FSI setting and instead consider the more general form
(
δλ,dsl

Γ − dma
Γ

)
Γ
= 0 (3.16)

in the following, which couples slave and master displacements of an abstract non-
conforming interface. When the interpolations (3.13) and (3.14) are substituted into
(3.16), the nodal blocks of two mortar integral matrices D and M emerge as

D [j, k] = DjkI3 =

∫

Γsl

ΦjN
sl
k dΓ I3 , (3.17)

M [j, l] = MjlI3 =

∫

Γsl

ΦjN
ma
l dΓ I3 , (3.18)

with the 3 × 3 identity matrix I3. Herein, D is a square 3nsl × 3nsl matrix, whereas the
definition of M generally yields a rectangular matrix of dimensions 3nsl×3nma. Inserting
the biorthogonality relation (3.15) into (3.17) allows for the advantageous simplification
of D to become a diagonal matrix with nodal blocks

D [j, k] = DjkI3 = δjk

∫

Γsl

N sl
k dΓ I3 . (3.19)

Finally, the discrete form of the general weak continuity condition (3.16) reads

Ddsl
Γ −Mdma

Γ = 0, (3.20)

which naturally defines a discrete projection from master displacements to slave dis-
placements as

dsl
Γ = D−1Mdma

Γ . (3.21)
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Equation (3.21) illustrates one major advantage of the dual mortar approach as com-
pared with standard mortar schemes. The discrete projection operator

P = D−1M (3.22)

at a non-conforming interface can be applied locally based on the trivial inversion of the
diagonal matrix D. Thus, evaluating (3.21) does not require the solution of a possibly
large linear system of equations. This evades the high computational cost associated
with standard mortar coupling of two non-conforming grids and thus resolves the con-
cerns sometimes raised in this context [23].

For the sake of completeness, it is pointed out that also matching grids are contained
in the proposed mortar formulation as a special case, yielding the identity projection
operator P = I.

3.3.2. Notation for fluid-structure coupling

We return to the actual fluid-structure interface conditions defined in Sec. 2.4. The
discrete form of the weak continuity condition (2.30) is represented by g = g(dS

Γ,d
G
Γ ),

where dS
Γ and dG

Γ are the vectors of discretized nodal structure and ALE displacements
at the interface Γ. Thus, the coupling equation to be solved in every solution step i of
the non-linear algorithm reads

[
CS −CF

]
[

∆d
S,n+1
Γ,i

∆d
G,n+1
Γ,i

]
= 0, (3.23)

where CS and CF are discrete structure and fluid coupling matrices:

CS =
∂g

∂dS
Γ

, CF =
∂g

∂dG
Γ

. (3.24)

In the final linear system of equations (3.8) and (3.9) for fluid and ALE fields the coupling
term can be identified as

f
F,n+1
λ,i = −CT

Fλ
n+1
i (3.25)

which is a discrete version of (2.33). Note that λn+1
i now represents the vector of dis-

cretized nodal Lagrange multipliers at nonlinear solution step i of timestep n + 1. Sim-
ilarly, the final system of equations (3.12) for the structure field is completed by the
coupling term

f
S,n+1
λ,i = CT

Sλ
n+1
i (3.26)

which is a discrete version of (2.34).
Depending on the choice of structure or fluid as slave side for the mortar approach

described above, the discrete coupling matrices CF and CS can be identified with the
mortar matrices D and M. A global saddle point type monolithic system of equations
including fluid and structure discretization as well as the coupling terms derived above
will be presented in Sec. 3.4.

3.3.3. Evaluation of mortar integrals

As the main focus of the present contribution is on the application of the dual mortar
method to non-conforming monolithic FSI simulations, the actual numerical integration
of coupling terms is not discussed in detail, but will only be outlined schematically. Fig-
ure 3 gives an overview of the main steps associated with the evaluation of the discrete



Nonlinear Multi-Physics Coupling for Non-Conforming Interfaces 151

proj. master
proj. slav

e

auxiliary plane

n0

x
sl
0

(a)

auxiliary plane

clip polygon

(b)

auxiliary plane

integration cell

(c)

FIGURE 3. Main steps of 3D mortar coupling for one slave and master element pair: (a) construct
an auxiliary plane from slave element center x

sl
0 and center normal n0 and project slave and

master nodes onto this plane, (b) perform polygon clipping, (c) divide clip polygon into triangular
integration cells and perform Gaussian integration.

mortar integral terms (3.18) and (3.19) in 3D. Obviously, suitable mortar segments for
consistent numerical integration need to be constructed. The mortar segments are de-
fined in such a way that the shape functions integrands in (3.18) are continuous on
these interface subsets. In 3D situations, this yields arbitrarily shaped polygons as can
be seen from Fig. 3(b).

To assure exact conservation of linear momentum, the slave side contributions in
(3.19) are integrated using the above defined mortar segments, too [4]. Moreover, exact
conservation of angular momentum and thus rotational invariance of the mortar con-
straints is achieved by applying a simple mesh initialization strategy based on nodal
relocation as proposed in [9].

The additional computational cost as compared with a conforming situation is virtually
negligible for the pure mesh tying case considered here. It is sufficient to evaluate D and
M once during initialization. Thereafter, the discrete coupling terms remain unchanged,
even though the coupled domains may exhibit finite deformations.

For further details on the numerical integration algorithms in both 2D and 3D the
interested reader is referred to the original work by Puso et al. [5,6,9] and to the authors’
recent work on dual mortar methods for contact analysis [3,4].
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3.4. Monolithic FSI system

In this paragraph we briefly derive the fully coupled monolithic linear system of equa-
tions, where all four discretized and linearized fields are considered: fluid, ALE, structure
and the interface Lagrange multipliers.

We start by reformulating the weak coupling condition (3.23). The coupling condition is
formulated in terms of the increments ∆d

G,n+1
Γ,i at the FSI interface, which have already

been eliminated from the fluid system (3.8) in Sec. 3.1. Applying Eq. (3.7) to (3.23)
generates the modified coupling condition

[
CS −∆t

2 CF

]
[

∆d
S,n+1
Γ,i

∆u
F,n+1
Γ,i

]
= χ(i)∆tCFu

F,n
Γ , (3.27)

with χ(i) defined in (3.10).
With (3.8), (3.12), (3.25), (3.26) and (3.27) we have all necessary relations at hand to

state the complete Jacobian monolithic system in timestep n+ 1:

J∆xn+1
i = −fn+1

i , (3.28)

where i denotes the iteration step of the Newton-like method. The FSI residual fn+1
i is

defined as

fn+1
i =




f
S,n+1
I,i

f
S,n+1
Γ,i

f
F,n+1
I,i

f
F,n+1
Γ,i

0

0




+ χ(i)∆t




0

0

FG
IΓu

F,n
Γ

FG
ΓΓu

F,n
Γ

AIΓu
F,n
Γ

CFu
F,n
Γ



. (3.29)

The vector x contains all unknowns from the four fields of the coupled problem and its
increment ∆xn+1

i reads

∆xn+1
i =




∆d
S,n+1
I,i

∆d
S,n+1
Γ,i

∆u
F,n+1
I,i

∆u
F,n+1
Γ,i

∆d
G,n+1
I,i

λn+1
i




. (3.30)

Finally the Jacobian matrix J =
dfn+1

i

dxn+1

i

is:

J =




SII SIΓ

SΓI SΓΓ CT
S

FII FIΓ + ∆t
2 FG

IΓ FG
II

FΓI FΓΓ + ∆t
2 FG

ΓΓ FG
ΓI −CT

F

0 ∆t
2 AIΓ AII

CS −∆t
2 CF



. (3.31)

In general, the linear system (3.28) is hard to solve with iterative linear solvers given
the saddle point type structure of (3.31). Therefore, the Lagrange multipliers will be con-
densed and the problem reduced to a three field problem containing only structure, fluid
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and ALE degrees of freedom. In the following section it will be shown that, indepen-
dent of the particular choice of slave and master discretization, the resulting systems
of equations are similar to the system obtained with conforming meshes [1] and hence
allow for an efficient use of iterative solution schemes.

4. Condensed systems and iterative solvers
In this section two variants are presented to reduce the saddle point type system

(3.31). In both cases the field of Lagrange multiplier is removed from the system. Fur-
thermore, either interface displacements of the structure dS

Γ or the interface velocity on
the fluid side uF

Γ can be eliminated from the system, based on the choice of master and
slave side for the mortar coupling.

4.1. Structure split

Here, the fluid field is chosen to be the master side for mortar coupling, i.e. CS = D and
CF = M. Since the structure displacements at the interface can then be removed from
the system of equations, this case is referred to as structure split. The Jacobian matrix J

of the FSI system (3.28) becomes



SII SIΓ

SΓI SΓΓ DT

FII FIΓ + ∆t
2 FG

IΓ FG
II

FΓI FΓΓ + ∆t
2 FG

ΓΓ FG
ΓI −MT

0 ∆t
2 AIΓ AII

D −∆t
2 M



. (4.1)

The vector of unknowns ∆xn+1
i remains unaltered, whereas the right-hand side vector

fn+1
i is modified to

fn+1
i =




f
S,n+1
I,i

f
S,n+1
Γ,i

f
F,n+1
I,i

f
F,n+1
Γ,i

0

0




+ χ(i)∆t




0

0

FG
IΓu

F,n
Γ

FG
ΓΓu

F,n
Γ

AIΓu
F,n
Γ

Mu
F,n
Γ



, (4.2)

with χ(i) defined in (3.10).
In a first step, we condense the Lagrange multipliers λn+1

i from the vector of un-
knowns (3.30). They can later be recovered from the solution, but in general their values
are of little importance for FSI computations. The second row of the block system of
equations is multiplied by the transposed projection matrix PT, defined in (3.22), from
the left, is added to the fourth row and is thereafter removed from the system whose
matrix reduces to




SII SIΓ

FII FIΓ + ∆t
2 FG

IΓ FG
II

PTSΓI PTSΓI FΓI FΓΓ + ∆t
2 FG

ΓΓ FG
ΓI

0 ∆t
2 AIΓ AII

D −∆t
2 M



. (4.3)

The modification of the residual vector and the vector of the unknowns is straightforward
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and is omitted here. For the applicability of the proposed approach it is important to note
that the projection operator P and its transpose can be evaluated very efficiently due to
the diagonal form of matrix D.

For further simplification of the system (4.3), Eq. (3.27) is solved for the increment
∆d

S,n+1
Γ,i resulting in

∆d
S,n+1
Γ,i =

{
∆tP

(
1
2∆u

F,n+1
Γ,i + u

F,n
Γ

)
, i = 0

∆t
2 P∆u

F,n+1
Γ,i , i > 0

. (4.4)

Substitution in system (4.3) yields the final Jacobian system J̃∆̃x
n+1

i = f̃n+1
i in which

only fluid velocities have to be solved for at the interface. The block system matrix J̃ can
be written after reordering as




SII
∆t
2 SIΓP

PTSΓI
∆t
2 PTSΓIP+ FΓΓ + ∆t

2 FG
ΓΓ FΓI FG

ΓI

FIΓ + ∆t
2 FG

IΓ FII FG
II

∆t
2 AIΓ 0 AII


 , (4.5)

the modified vector of unknowns as

∆̃x
n+1

i =




∆d
S,n+1
I,i

∆u
F,n+1
Γ,i

∆u
F,n+1
I,i

∆d
G,n+1
I,i


 (4.6)

and, finally, the modified residual as

f̃n+1
i =




f
S,n+1
I,i

f
F,n+1
Γ,i +PTf

S,n+1
Γ,i

f
F,n+1
I,i

0




+ χ(i)∆t




SIΓPu
F,n
Γ(

PTSΓΓP+ FG
ΓΓ

)
u
F,n
Γ

FG
IΓu

F,n
Γ

AIΓu
F,n
Γ


 . (4.7)

As it has been pointed out in Sec. 3.3.1 the case of conforming meshes implies an
identity projection operator P = I, which maps between degrees of freedom on the fluid
side and degrees of freedom on the structure side of the interface. Formally neglecting
this transformation between the fields, the same monolithic FSI system is obtained as
in [1] for the conforming case.

Note that in the non-conforming case the matrix products have to be carried out ex-
plicitly to obtain a suitable block matrix that can be handed to the linear solver.

4.2. Fluid split

Of course it is also possible to define the field of Lagrange multipliers λ on the fluid side,
yielding CS = M and CF = D. This approach is called fluid split, since there will be no
velocity unknowns to be solved for at the fluid side of the interface. We obtain a Jacobian
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matrix

J =




SII SIΓ

SΓI SΓΓ MT

FII FIΓ + ∆t
2 FG

IΓ FG
II

FΓI FΓΓ + ∆t
2 FG

ΓΓ FG
ΓI −DT

0 ∆t
2 AIΓ AII

M −∆t
2 D



. (4.8)

Furthermore, the specific form of the FSI residual vector reads

fn+1
i =




f
S,n+1
I,i

f
S,n+1
Γ,i

f
F,n+1
I,i

f
F,n+1
Γ,i

0

0




+ χ(i)∆t




0

0

FG
IΓu

F,n
Γ

FG
ΓΓu

F,n
Γ

AIΓu
F,n
Γ

Du
F,n
Γ



, (4.9)

where χ(i) is defined in (3.10). As before we only concentrate on the representation of
the block system matrix and state the final representation of the vector of unknowns and
residual vector at the end of the paragraph.

We proceed by eliminating the Lagrange multipliers λ from the system. Therefore the
blocks in the fourth row are multiplied by PT from the left and then added to the second
row of the block system. This yields a reduced 5-by-5 block system with system matrix




SII SIΓ

SΓI SΓΓ PTFΓI PT
(
FΓΓ + ∆t

2 FG
ΓΓ

)
PTFG

ΓI

FII FIΓ + ∆t
2 FG

IΓ FG
II

0 ∆t
2 AIΓ AII

M −∆t
2 D



. (4.10)

The last row of the system matrix is a representation of (3.27) and to remove it from
the system we solve this equation for the fluid velocities u

F,n+1
Γ,i yielding

∆u
F,n+1
Γ,i =

{
2
∆tP∆d

S,n+1
Γ,i − 2uF,n

Γ , i = 0
2
∆tP∆d

S,n+1
Γ,i , i > 0

, (4.11)

which can thus be substituted in terms of the structure displacement. The reduced sys-

tem matrix Ĵ of the Jacobian Ĵ∆̂x
n+1

i = f̂n+1
i is then given by




SII SIΓ

SΓI SΓΓ +PT
(

2
∆tFΓΓ + FG

ΓΓ

)
P PTFΓI PTFG

ΓI(
2
∆tFIΓ + FG

IΓ

)
P FII FG

II

AIΓP 0 AII


 , (4.12)

corresponding to a vector of unknowns

∆̂x
n+1

i =




∆d
S,n+1
I,i

∆d
S,n+1
Γ,i

∆u
F,n+1
I,i

∆d
G,n+1
I,i


 , (4.13)
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containing only structure degrees of freedom at the interface. To complete the final linear
system, the modified residual vector reads

f̂n+1
i =




f
S,n+1
I,i

f
S,n+1
Γ,i +PTf

F,n+1
Γ,i

f
F,n+1
I,i

0




+ 2χ(i)




0

PTFΓΓu
F,n
Γ

FIΓu
F,n
Γ

0


 . (4.14)

5. Concluding remarks
During this research the group from University of Colorado has been able to suc-

cessfully understand the dual mortar method as it applies to incompressible FSI prob-
lems. Likewise, the research group from Technische Universität München has learned
how non-linear surface effects such as wear can be used in an ALE formulation. We
have successfully identified the hurdles to overcome in order to extend the dual mortar
method to include compressible Navier-Stokes equations with non-linear fluid-thermal
coupling. There is still work to be done to figure out the solutions to these hurdles and
whether or not those solutions will be computationally prohibitive for implementation.
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