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The paper presents the stability analysis of a hypersonic boundary layer, perturbed by
a local heating/cooling element at the wall. The study is performed for a freestream
Mach number and a unit Reynolds number of M∞ = 5.4 and Reunit = 4.8 ·106 1/m,
respectively. At first, simulations are carried out for a two-dimensional control element
with different temperatures and lengths at various positions. The results obtained by
direct numerical simulations for 2-d distrubances are in good agreement with linear
stability theory. It is shown that local wall heating increases the disturbance amplitude
in downstream direction, however, in the heated zone perturbations are stabilized. In
case of cooling, the opposite effect was discovered, namely a significant increase of the
disturbance magnitude on the element and damping downstream. Furthermore, three-
dimensional effects of a cooling/heating element with finite extent in spanwise direction
are considered. Bi-global linear stability theory in flow crosscuts is employed to inves-
tigate the stability behavior of the thermally perturbed hypersonic boundary-layer flow.
It is shown that despite the three-dimensionality of the thermal element 1st-mode dis-
turbances still play a minor role. For the investigated setup 3-d effects are found to be
rather weak and apparently are limited to the region of the element.

1. Introduction
The development of secure and re-usable re-entry vehicles requires the complete

control of the heat distribution on its Thermal Protection System (TPS). During the most
critical re-entry phase, the hypersonic flow along the vehicle initiates a laminar bound-
ary layer inside of which most of the transfer phenomena take place (heat, momentum
and mass transfer). If at one position of the vehicle, this boundary layer experiences a
transition from the laminar to the turbulent regime the TPS will receive a sharp increase
of the incoming heat flux (minimum 3 times higher at the corresponding position). For re-
usability it is mandatory to protect the vehicle adequately against this overheat. There-
fore, aerospace designers need to receive the proper information and tools allowing
for a better prediction and ultimately a better control of the transition in the hypersonic
regime.

For aerospace engineers the design of new hypersonic vehicles requires accurately
predicted and effectively controlled heat loads on its TPS in order to avoid a destructive
accident during the re-entry in the atmosphere. The lack of reliable methods obliges
vehicle designers to use a conservative approach and, thus, to oversize the thermal
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protection system. As a consequence, the part of total mass budget dedicated to the
payload is reduced to a few percent.

For configurations having aerodynamically smooth surfaces, transition is associated
with excitation in the boundary layer and downstream amplification of unstable modes,
namely, the first and second modes. Although features of these instabilities and oppor-
tunities of their control have been studied by the research community for more than fifty
years, they have been focused on boundary layers having fairly uniform distributions of
the wall temperature and heat flux.

However, actual TPS may have elements of different heat conductivity and/or emis-
sivity. Junctures between these elements lead to jumps of the heat-transfer boundary
conditions. Furthermore, active TPS may produce regions of localized relative heating
or cooling of the aerodynamic surface. These thermal non-uniformities may significantly
affect the boundary-layer mean flow, excitation and evolution of unstable modes and,
ultimately, the transition locus. The investigation of the physical mechanisms associated
with the foregoing thermal effects will help us to design advanced thermal protection
systems providing capabilities of transition control.

The localized surface heating has been already experienced in ground facility but
only up to the supersonic regime. Recently, DNS studies of Soudakov et al. [1] of flow
disturbances interacting with the wall-temperature jumps on a flat plate in a Mach 6 free
stream flow were carried out. It was found that these jumps affect both stability and
receptivity of the boundary layer.

The remainder of this paper is organized as follows: Section 2 describes the analysis
of the two-dimensional heating/cooling element for various temperatures, lengths and
positions. The effects of a three-dimensional element on the flow stability are presented
in Sec. 3. Finally, Sec. 4 summarizes the main findings and contains some concluding
remarks.

2. Two-dimensional simulations
2.1. Problem formulation

An effect of the local cooling/heating on the development of the boundary layer dis-
turbances was studied numerically for the test case of the hypersonic flow formulated
above for the flat plate under zero angle of attack (Fig. 1). It is well known that in this
case the transition is determined by development of the most unstable second mode.
It was also shown that the most amplified disturbances of the second mode have zero
angle of incidence to the mean flow direction [2,3].

Numerical simulation of the disturbances development in the boundary layer was car-
ried out using the linear stability theory (LST) and direct numerical simulation (DNS).
Taking into account the above mentioned consideration, DNS simulation was performed
for 2-d first and second mode disturbances. The Commercial CFD software Fluent 6.3
was used. LST was used for the study of the influence of local cooling / heating on the
evolution of the first-mode perturbations (which is most unstable for nonzero angle of
incidence).

All calculations were carried out for flat plate model of 300mm length for the following
free-stream parameters: M∞ = 5.4, P∞ = 389Pa, T∞ = 59K. The preliminary esti-
mations revealed that the effects of numerical viscosity in DNS may be neglected if grid
has at least 50 cells per wavelength of the disturbance. Therefore the computational grid
consisted of 3100× 137 cells and corresponded to physical domain of 310× 45mm. The
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FIGURE 1. Problem formulation.

grid was uniform in streamwise and normal to the wall directions in the boundary layer
(80 cells) and rarefied to the upper boundary. This kind of grid allowed to calculate the
development of disturbances with frequency up to 170 kHz. Generation of disturbances
was carried out by specifying the input boundary conditions for the propagation of slow
acoustic wave:

P = P∞ + P
′

= P∞ + ǫ ·sin(wt+ ϕ) ·ρ∞u2∞ (2.1)

T = T∞ + T
′

= T∞ + ǫ ·sin(wt+ ϕ) ·(γ − 1) ·M2
∞ ·T∞ (2.2)

M = u/a, u = u∞ + u
′

= u∞ − u∞ ·M∞ ·ǫ ·sin(wt+ ϕ) (2.3)

a = a∞ + a
′

=
√
γ ·R ·(T∞ + T ′) (2.4)

Here, the subscript ∞ corresponds to steady freestream parameters, the index ’ corre-
sponds to the fluctuating component (acoustic wave), and parameter ǫ is a dimension-
less amplitude of the disturbances.

Sequential analysis of many frequencies is not efficient because the growth of per-
turbations occurs in a wide range of frequencies. A separate review of a large number
of discrete frequencies requires a substantial amount of computation time. Therefore it
was decided to use the linear combination of several harmonic waves of equal amplitude
as the initial perturbation. This combination included 13 waves of frequencies from 55
to 175 kHz with increment of 10 kHz. The preliminary calculations have shown a good
agreement between the level of perturbation obtained in batch mode and reconstructed
as sum of the individual frequencies.

It is clear that 2D formulation of the problem can not reliably assess the development
of nonlinear processes. To consider only the linear stage of the disturbance develop-
ment it was necessary to choose correctly the amplitude of initial perturbations. In the
preliminary calculations it was found that this value must not exceed ǫ = 0.5e−5.

The steady distributions of the flow parameters across the boundary layer obtained in
DNS were used as local profiles for LST analysis. For every test case 105 local profiles
were calculated distributed from x = 40mm to x = 300mm with increment of 2.5mm.
The preliminary estimations revealed that the maximum amplification of the first mode
disturbances corresponds to χ = 55◦ . It allowed us to save the CPU time and consider
only wave inclination angles of χ = 0◦ and χ = 55◦ corresponding to the first and second
modes of disturbances.
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(a) Heater. (b) Cooler.

FIGURE 2. Distributions of pressure fluctuations on the wall and δ∗ for the various locations of
the control element.

2.2. DNS results

The simulation of the boundary layer disturbance development with local heating and
cooling of the wall was carried out for the wall temperature TW = 290 K. The temperature,
location and extension of the cooler/heater region were varied.

Figure 2(a) and Fig. 2(b) show the RMS amplitude of pressure pulsations on the wall
< PW > and displacement thickness δ∗ along the wall for the several cases: reference
(base) as well as corresponding to heating and cooling of the wall at various locations
(0.05− 0.1m, 0.1− 0.15m, 0.15− 0.2m, 0.2− 0.25m). It can be seen from Fig.2 that the
wave packet begins to grow rapidly from x = 0.07m. In the base case there is monotonic
increase of RMS value of the pulsations downstream.

It can be seen from the Fig. 2(a), that immediately downstream of the heater there
is damping of the perturbations amplitude, but after that level of pulsations begins to
grow and becomes greater than base value. This result was obtained for the heater
located of at x = 0.05− 0.1m and 0.1− 0.15m. It is obvious that with increasing length
of the computational domain the same behavior of disturbances may be obtained for the
heater placed at x = 0.15− 0.2m and 0.2− 0.25m.

Local cooling of the surface leads to more significant changes of the pulsations am-
plitude due to extreme amplification of one or several waves of the packet in the cooled
zone. This effect is connected with almost constant boundary-layer thickness in this re-
gion and destabilizing effect of the wall cooling. Except of the extremely amplified waves
the rest of waves are stabilized, which causes reducing of the packet amplitude down-
stream of the cooling zone.

From the Fig. 2(b) and the following figures it can be seen that there is a peak of dis-
turbance magnitude at the end of the cooler. Such a behavior of pulsations was initially
connected with possible BL receptivity processes to external acoustics. The receptivity
may be caused by presence of the slow acoustic wave above the boundary layer and
strong variation of the boundary-layer thickness in this region. To clarify this question an
additional study was performed. In these computations the pulsations inside the bound-
ary layer were excited by means of synthetic jet on the wall instead of external acoustics.
The data obtained coincide with the data presented above so we may conclude that all
features of the wave packet development near the cooler/heater are connected with
boundary layer stability.
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(a) Heater. (b) Cooler.

FIGURE 3. Distributions of < P > and δ∗ for the various temperature of the control element.

Figure 3 shows < PW > and δ∗ distributions presented for various temperature of
control element located at x = 0.1−0.15m. The increase of its temperature Tc from 365
K to 1000 K is accompanied by gradual decrease of pulsation amplitude in the zone of
heating. It is obvious that in this case there are two effects acting together: stabilization
of the second mode due to increase of the wall temperature and detuning of the most
amplified wave from the local BL parameters due to fast change of δ. Downstream of
the heater there is some amplification of the wave packet amplitude. This amplification
may be dramatic for high Tc due to slow growth of δ. In this case of almost parallel flow
some waves are permanently amplified due to almost constant local parameters of the
BL.

In the case of local cooling of the wall (Tc = 250K−100K) we can see that in the zone
of control element there are favorable conditions for pulsation amplification. Besides the
destabilization of the second mode (as it is known from LST) the wall cooling promotes
conservation of the local BL parameters and amplification of the pulsations due to the
tuning of several waves. The frequency range of these tuned waves are narrow there-
fore the most part of the waves are stabilized on the cooler and as a result the overall
amplitude of the packet is decreased downstream of the control element. This effect is
stronger for low Tc.

Figure 4 illustrates the effect of length of the control element Lc on the disturbances
evolution. The wall distribution of pulsation amplitude and δ∗ are shown for several sizes
of heater (Tc=100K) and cooler (Tc=590K). The control element starts from x = 0.1m
and extends for 0.01− 0.075m. It is clear to see that the general behavior of pulsations
corresponds to the data presented above. However the increase of the heater length
does not result in strong pulsation decrease in this zone. Apparently it is connected
with shape of the boundary layer above the heater. For the case of the cooler it can
be seen that increasing of its length is favorable for destabilization of the wave packet.
Additionally to cumulative effect of the cold wall on the second mode, the BL thickness
in this case is constant allowing some waves to grow for a long time.

All the data presented show the existence of the sharp peaks in the wall pulsation
distributions corresponded to the begin and the end of control element. The strongest
peaks may be found at the end of the cooler and their strength marginally depends on
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(a) Heater. (b) Cooler.

FIGURE 4. Distributions of < P > and δ∗ for the various length of the control element.

FIGURE 5. Comparison of the growth rates
distribution of along the plate (Solid - DNS,
dashed - LST).

FIGURE 6. Comparison of the velocity
eigenfunctions obtained in the cooling
zone (Black curve - DNS, Red curve -
LST).

Lc. It may be concluded that existence of these peaks is produced by the strong angular
displacement of streamlines and accompanying compression and extension waves.

2.3. Results of LST and comparison with DNS

The comparison of the amplification rate distributions along the wall obtained from LST
and DNS for the reference test case is presented in Fig. 5. Good agreement may be
found only in the regions of maximum growth rate for all frequencies. The level of growth
rate upstream from the zone of maximum amplification estimated by LST is lower com-
pared to DNS, because LST does not take into account not-parallel flow [4, 5]. It is
necessary to note that upstream of the maximum amplification zone DNS simulation
does not reveal any pulsation damping (negative −αi) region. As result of this effect we
may expect wider frequency range of amplification of the second mode disturbances for
the real unparallel BL. Assumption of the flow parallelism in LST results in more seri-
ous disagreement in the case of the local heating/cooling The comparison of the local
−αi obtained by LST and DNS showed that LST data may be used only for qualitative
estimations.
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(a) Base case. (b) Heater. (c) Cooler.

FIGURE 7. Distribution the amplitude of disturbances along the plate.

(a) x = 0.08m. (b) x = 0.14m. (c) x = 0.20m.

FIGURE 8. Spectra of growth rates (LST).

The comparison of velocity pulsation distributions across the BL calculated by LST
and DNS codes near the cooling segment are presented in Fig. 6. There is good agree-
ment of profiles, which means that perturbations in the both cases have the same nature
(second mode).

Figure 7 shows the distributions of disturbance amplitude obtained by LST along the
plate for various frequencies for χ = 0◦ (second mode). In the reference case (plot 7(a))
the peak of fluctuation increases gradually along the plate with decreasing of frequency.
For the case of heater position x = 0.1− 0.15m and Tc = 590K (plot 7(b)) there is am-
plification of disturbances for the frequencies 135 and 120 kHz. There is also decreased
amplification rate for f = 150 kHz in the region of the heated segment and resulting shift
of the amplification maximum downstream. For the test case of the cooling (Tc = 100K)
applied in the same position (plot 7(c)) the situation is opposite. The disturbances of
f = 150 kHz are amplified in the region of wall cooling were the disturbances of lower
frequencies are damped. These data agree with DNS results and allow to conclude that
wall heating and cooling effectively change the frequency range of the most amplified
disturbances.

One of the useful LST applications is possibility of analysis of 3D wave development
(in particular, the first mode) using the mean flow parameters obtained from 2D DNS.
Such approach allows to save computation time required for analysis.

Figure 8 shows the growth rate spectra for the first (χ = 55◦) and second (χ =
0◦)modes obtained upstream, in the region of and downstream of the heating seg-
ment. The growth rate and frequency normalized by the following formula: αi = α∗

i /δ,
ω = ω∗ ·νe/U2

e (Ue and νe is velocity and kinetic viscosity at the edge of boundary layer).
Upstream the heater growth rate of the first mode is significantly lower comparing to
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(a) Second mode. (b) First mode.

FIGURE 9. The distribution of the pulsation amplitudes along the plate.

the second mode. In the region of the heater the first mode growth rate significantly
increased and reaches the level of the second mode. Downstream from the heater the
first mode growth rate is still higher than for the base case. The analysis of an effect of
wall temperature on the amplification rates revealed that stability of the second mode
is not strongly affected for the temperature range studied. The principal effect in this
case is connected with variation of the boundary-layer thickness. An effect of the wall
temperature on the first mode stability is more important.

Figure 9(a) and Fig. 9(b) show the streamwise distributions of the maximum of the
pulsations amplitude envelope calculated for wide range of frequencies for χ = 0◦ (sec-
ond mode) and χ = 55◦ (first mode). In the reference case the pulsations of the first
and second modes increase monotonically with increasing x. The level of the first mode
pulsations is lower than corresponding value for the second mode. For the local cooling
/ heating test cases behavior of the second mode is qualitatively consistent with DNS
results. Such a behavior is primarily associated with a shift of the frequency range of
positive growth coefficients due to changes of δ.

The distributions of the first mode pulsations amplitude are more monotonous. Local
cooling and heating of the wall influence the first mode disturbance development along
the entire zone. This is due to the fact that the temperature factor has a much greater
effect on the first mode. Accordingly, the cooling / heating has a significant stabilization
/ destabilization effects on the first mode and effects associated with changes of δ are
less pronounced. The most interesting is the fact that as a result of the use of the heater
level of the first mode begins to exceed the level of the second mode. At the same
time the above shown data point out that the peak value of the amplification ratio of the
second mode everywhere, except the heater, are higher than for the first mode. The
growth rate peak of the first mode is much wider, therefore, the perturbations of the first
mode have a longer distance for development. As a result the amplitude of the first mode
fluctuations is higher than the amplitude of the second (in the case of the heater).

3. Three-dimensional simulations
This chapter deals with the influence of a three-dimensional heating/cooling element

on the above described hypersonic flat-plate boundary layer. For the stability analysis of
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FIGURE 10. Integration domain.

the perturbed flow bi-global linear stability theory (BLST) is used, which provides two-
dimensional eigenfunctions in spanwise crosscuts, e.g., in the wake of the perturbation
element. The method has been already applied for the analysis of a discrete three-
dimensional roughness element in a hypersonic boundary layer [6–9].

3.1. Steady Base Flow

3.1.1. Governing Equations, Numerics and Discretization

A laminar hypersonic boundary-layer flow over a flat plate with a localized three-
dimensional heating/cooling element is investigated. Figure 10 shows the rectangular
integration domain. The steady primary state with the element is obtained by means
of a time-accurate direct numerical simulation (DNS) with the in-house code NS3D.
For more details concerning the numerical solver see [10]. The governing equations
are non-dimensionalized with the reference length L = (µe,0 ·Re)/(ρe,0 ·ue,0) and the
values of velocity, density, temperature, viscosity and conductivity at the upper inflow
boundary x0 = 100mm (subscript e,0). Note that the pressure is non-dimensionalized by(
ρe,0ue,0

2
)
. Air is treated as a non-reacting calorically perfect gas with constant Prandtl

number Pr = 0.71 and constant specific-heat ratio κ = cp/cv = 1.4. The Reynolds num-
ber Re are set to Re = 105. Sutherland’s law is used to calculate the dynamic viscosity µ
as a function of temperature [11].

A self-similarity solution obtained from boundary-layer theory serves as initial flow
field and provides the flow variables that are prescribed at the inflow (x = x0 = 100mm).
The edge values of the Mach number, the temperature and the pressure at this position
are taken from the 2-d simulations of Part I. Note that the weak shock emerging from the
leading edge is not included. At the outflow (x = xN = 350mm), a buffer region is used,
where all instantaneous flow variables are smoothly ramped to the initial condition. At
the wall (y = y0), the no-slip, no-penetration boundary conditions are imposed on the ve-
locity components. The pressure is calculated according to ∂p/∂y|w = 0 and the density
is computed from the equation of state. The wall is isothermal with Tw = 290K, and, with
Tw/Trec = 0.84, it is cooled. At the freestream boundary (y = yM = 37.5mm ≈ 12δ0), all
flow variables are computed such that the gradient along spatial characteristics is zero,
except for the pressure, which is computed from the equation of state. δ0 refers to the
boundary-layer thickness at the inflow boundary x = x0.

For the 3-d investigations the heating/cooling element is located at x1 = 200mm
downstream of the leading edge. Its streamwise and spanwise extent is set to |x1−x2| =
50mm ≈ 23δ0 and |z1 − z2| = 25mm ≈ 11.5δ0, respectively. For the cooled case the el-
ement has a temperature of TC = 100K (TC/Tw = 0.34), whereas for the heated case a
temperature of TH = 440K (TH/Tw = 1.52) has been chosen. In order to smoothly con-
nect the wall temperature with the temperature in the region of the element a 5th-order
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Freestream Mach number Me,0 5.27 [-]
Freestream temperature Te,0 1.00 [-] 61.075 K
Freestream pressure pe,0 0.026 [-] 417.5 pa
Isothermal wall temperature Tw 4.75 [-] 290.0 K
Recovery temperature Trec 5.68 [-] 346.9 K
Reference length L 1.00 [-] 21.37 mm
Periodicity length λz 3.1416 [-] 67.13 mm
Distance from the leading edge x1 9.3589 [-] 200.0 mm
Streamwise element extent |x1 − x2| 2.3398 [-] 50.0 mm
Spanwise element extent |z1 − z2| 1.1699 [-] 25.0 mm
Element temperature TC/TH 1.64/7.20 [-] 100/440 K
Nx x Ny x Nz 1000 x 250 x 65 [points]
∆x 0.117 · 10−1 [-]
∆y0 −∆yM 0.300 · 10−2 - 2.412 · 10−2 [-]
∆z 0.245 · 10−1 [-]
∆t 0.314 · 10−2 [-]

TABLE 1. Simulation parameters.

polynomial is used, where both the gradient and curvature are zero at the beginning and
at the end of the respective smoothing region. The temperature smoothing has a width
of five millimeters in both streamwise and spanwise direction. 50000 time steps were
computed in order to obtain a fully converged solution of the steady primary state. Table
1 contains an overview of the simulation setup.

3.1.2. Base-Flow Results

Figure 11 shows the wall-temperature distribution and the vortex visualization using
constant values of λ2 [12] for the two investigated cases. Furthermore, spanwise cross-
cuts of the temperature and u-velocity distribution at positions A and C are presented.
In both cases it can be observed that the u-velocity is only slightly altered by the heat-
ing/cooling element leading to very weak vortical structures at the edges and in the near
wake region of the element. Note that these structures are more pronounced for the
cooled case, since the temperature ratio is higher than for the heated case. In contrast
to the u-velocity distribution, the temperature field exhibits stronger gradients, which may
lead to a different stability behavior of the flow. In order to determine the influence of the
three-dimensionality of the heating/cooling element a bi-global linear stability analysis
is performed. The red solid lines refer to the three positions, where the stability analysis
is carried out. Note that two of these positions are located on the element (positions A
and B at x = 212.5mm and x = 237.5mm, respectively) and one is positioned farther
downstream at x = 262.5mm (position C).

3.2. Bi-global Linear Stability Theory

3.2.1. Governing Equations, Numerics and Discretization

Bi-global stability theory is applied for the stability analysis of the flow. Throughout this
paper, the numerical scheme of Groskopf et. al. [6–9] is used. BLST is derived from the
compressible three-dimensional Navier-Stokes equations, using a decomposition of all
flow quantities into steady mean-flow terms and unsteady fluctuation terms. In addition
to the well-known assumptions of primary linear stability theory the following holds for
BLST: For the steady primary state a non-zero velocity component in wall-normal direc-
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FIGURE 11. Left: Wall temperature distribution (color) and vortex visualization (shading, isosur-
faces of λ2 = −0.008). Right: Spanwise crosscuts at positions A and C showing the temperature
field and isolines of constant streamwise velocity (0.0m/s < u < 826m/s, ∆u = 82.6m/s).

tion is allowed, if it does not account for additional boundary-layer growth (i.e. the DC
component is neglected). Furthermore, the complex amplitude distribution in the modal
perturbation ansatz is two-dimensional. Note that the governing stability equations are
treated in dimensionless form (see Sec. 3.1.1). Both mean flow and fluctuation terms
are discretized on a structured mesh in the y-z plane using compact finite differences of
tenth order in spanwise direction and a spectral Chebyshev collocation method includ-
ing a transformation for grid-point clustering in high-shear regions [13,14] in wall-normal
direction. The implicitly restarted Arnoldi method (see Arnoldi Package ARPACK [15])
is used to compute the resulting linear eigenvalue problem of the temporal approach.
In order to determine spatial eigenvalues Gaster’s relation is employed. For the eigen-
mode tracking a comparison of the eigenfunctions’ amplitude shape (scalar product) is
performed to identify the corresponding eigenvalues of the next tracking step.

3.2.2. Stability Results

First, the spatial amplification rates αi,cg of the most amplified eigenmode with zero
spanwise wave number for the 2-d element cases with and without heating/cooling ele-
ment at position A are shown in Fig. 12. αi,cg is the growth obtained by Gaster’s relation
using the group velocity. The graph contains both the results obtained from NS3D/BLST
(BLST used as standard LST: All variables are now invariant in z-direction) and the
results of the commercial code FLUENT for the simulation of the primary state in combi-
nation with an in-house 2-d LST solver (LSTNov) for the stability analysis. It can be ob-
served that the NS3D/BLST-tool kit leads to lower maximum amplification rates (≈ 15%
deviation). If LSTNov is used for the two baseflows (NS3D and FLUENT), the deviation
is only less than five percent. (We note however that the BLST has been validated with
an IAG in-house LST-solver, showing perfect agreement.) The frequency of the maxi-
mum amplification rates is in very good agreement. Note that the cooling also stabilizes
the 2nd mode that has higher frequencies due to a local decrease of the boundary-layer
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thickness. The decrease must be caused by differing profiles u(y), T (y) compared to a
self-similar boundary layer at the lower wall temperature.

Figure 13 shows the temporal amplification rate ωi as a function of the frequency ωr

for the cooled 3-d element case at position A. The eigenvalue spectra are obtained for
the streamwise wave numbers αr = 106.8mm and αr = 427.4mm, respectively, and
contain the results for three different grid resolutions. Since the agreement for the phys-
ical modes is very good, grid independence is achieved using a resolution of 96 points
in spanwise direction and 91 Chebyshev collocation points in wall-normal direction for
all stability computations throughout this work.

The spatial amplification rates of the most amplified eigenmodes as a function of the
frequency for the three investigated cases – cooled, heated and reference case – at
the three different downstream positions are presented in Fig. 14. The figure contains
the results for both the 2-d and 3-d heating/cooling element. It demonstrates that for
all investigated cases (2-d or 3-d, heated or cooled) two-dimensional, high frequency
2nd-mode disturbances exhibit stronger growth rates and, thus, from a stability point of
view, are more dangerous for the flow than obliquely traveling, low frequency 1st-mode
disturbances. For the 2-d element cases it can be observed that heating results in higher
1st-mode amplification rates, whereas cooling has the opposite effect. Note further that
above the temperature element cooling results in a frequency shift towards higher values
for the most amplified 2nd-mode growth rates. Compared to the 2-d element case, the
3-d cooling results in slightly increased amplification rates at lower frequencies for both
the 1st- and 2nd-mode disturbances. Again, the 3-d heating has the opposite effect.
Note that no increase of 1st-mode amplification rates is observed for the 3-d cases. It
can be stated that despite the three-dimensionality of the heating/cooling element 1st-
mode disturbances play a minor role for the investigated setup. Note further that for
the position downstream of the temperature element the 2nd-mode disturbances show
a similar behavior for all investigated cases. The effects of the thermal perturbation
element seem to be restricted to its streamwise extent.

Figure 15 illustrates the T ′-eigenfunction distribution corresponding to the most am-
plified 1st-mode disturbances (see Fig. 14) at the three investigated y-z-planes for the
cooled and heated case. Additionally, the graph contains the temperature distribution of
the steady base flow solution. For comparison, the 1st-mode T ′-eigenfunction distribu-
tion corresponding to the most amplified growth rates for the 2-d heating and cooling at
position A (Fig. 15 top) is also included. Note that the eigenfunction distribution of the
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FIGURE 14. Spatial amplification rate vs. frequency for the cases with and without heating/cooling
element at positions A-C (a)-c)). Left: 1st-mode. Right: 2nd-mode. Symbols refer to the 3-d cases,
whereas solid lines without symbols label the 2-d cases (propagation angle of the 2-d waves:
χ = 0). Black stands for the reference case, blue for the cooled case and red for the heated case.

2-d element cases is similar for all three locations. Hence, only position A is presented.
The thick solid line at y = 0mm refers to the spanwise extent of the heating/cooling ele-
ment. For the 2-d element cases a pearl-necklace-like structure of the T ′-eigenfunction
distribution can be observed, representing the ± obliquely traveling disturbance waves
as a standing wave in spanwise direction. The distortion of the 3-d T ′-eigenfunctions
is rather weak for position A. For heating, the structures are similar in shape and ex-
tent as for the 2-d element case, whereas for cooling significant differences appear.
The average spanwise wavelength is now given by the cooling element width. Further
downstream this effect relaxes. It is worth noting that the 1st-mode u′-eigenfunctions,
which exemplarily are plotted in Fig. 16 for position A, show a similar behavior. It can be
observed that the u′-distribution merely differs from the T ′-eigenfunction, although the
gradients of the temperature field are much stronger than the gradients of the u-velocity
(see Fig. 11).

The T ′-eigenfunction distribution of the 2nd-mode disturbances (corresponding to the
most amplified growth rate of Fig. 14) is displayed in Fig. 17. The graph shows the re-
sults for the heated and cooled case at the three investigated positions. For comparison,
the left column illustrates the eigenfunctions of the 2-d element cases with and without
heating/cooling element. Since they are two-dimensional and not varying in spanwise
direction, these eigenfunctions are plotted as function of y only. The T ′-eigenfunctions of
the 3-d element cases are found to be locally isolated and strongly distorted in spanwise
direction, where the maximum is either sitting on top of the thermal element or in be-
tween two elements. Note that for the heated case the same mode (locally isolated over
the element and symmetric) seems to be dominant at all positions A-C. For the cooled
case, however, the most dominant mode varies from locally isolated and symmetric at
position A to locally isolated and anti-symmetric at position B. Finally, at position C the
most dominant mode resembles the 2-d element case except for the wake region of
the element. Hence, the three-dimensional character of the eigenfunctions for both the
heated and cooled case is still present for position C downstream of the element. This is
in contrast to the findings of Fig. 14, where the growth rates exhibit no major difference
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a)

c)

b)

FIGURE 15. 1st-mode T ′-eigenfunction and temperature distribution of the primary state in span-
wise crosscuts at positions A-C (a)-c)) for the cooled (left) and heated (right) 3-d case. The eigen-
functions of the 3-d cases correspond to the respective most amplified frequency of Fig. 14-left.
For comparison, the 2-d heating and cooling at position A is also included (top), now showing
a 3-d disturbance wave at propagation angle χ ≈ 58◦ (contradictory to Fig. 14-left). Isocontours
refer to the modulus of the perturbation amplitude T ′ = |T̂ | normalized by the maximum of T ′,
solid lines indicate the temperature distribution of the primary state. Axis not to scale.

between the 2-d and 3-d element case. Similar to the first mode the u′-eigenfunctions of
the second mode do not differ qualitatively from the T ′-eigenfunction distribution either
(not shown).

The N-factor curves (N = −
∫
x
αi,cgdx) for the integrally most amplified frequency

(f = 87.7 kHz, a second mode in the reference case) of the 2-d and 3-d cases gained
by the NS3D/BLST-package are shown in Fig. 18. Compared to the reference case,
the heated 2-d element case exhibits a slight increase of the N-factor in the region of
the element. Downstream of the element, however, the N-factor has the same slope
as the reference curve. In compliance with Fig. 14 the N-factor of the 3-d heating is
growing slower as the 2-d case in the region of the element (now a 3-d second mode),
but exhibits the same slope as the reference and 2-d heated case farther downstream.
For the cooled 2-d element case the N-factor is decreasing at first due to a shift of the
amplified second modes to higher frequencies (δ⋆ is locally decreased), and thus the
fixed frequency is now rather in the region between the second and first mode instability
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FIGURE 16. 1st-mode u′-eigenfunction distribution in a spanwise crosscut at position A for the
cooled (left) and heated (right) case. Isocontours refer to the modulus of the perturbation ampli-
tude u′ = |û| normalized by the maximum of u′. Axis not to scale.

c)

b)

a)

FIGURE 17. 2nd-mode T ′-eigenfunction and temperature distribution of the primary state in span-
wise crosscuts at positions A-C (a)-c)) for the cooled (middle column) and heated (right column)
case. The eigenfunctions correspond to the respective most amplified frequency of Fig. 14-right.
For comparison, the 2nd-mode T ′-eigenfunctions of the 2-d cases are also included (left column).
Isocontours refer to the modulus of the perturbation amplitude T ′ = |T̂ | normalized by the maxi-
mum of T ′, solid lines indicate the temperature distribution of the primary state. Axis not to scale.

for 2-d waves (note that 2-d first mode waves are hardly amplified). The changeover
from second to first mode has been verified by looking at the wall-normal phase profiles
of the pressure disturbances (first mode disturbances show virtually constant phase,
second mode disturbances exhibit a phase jump near the wall). Downstream the N-
factor grows at the same slope as the reference curve behind the element, because the
2-d second mode is nearly regained. In contrast to that, the cooled 3-d element case
(based on the downstream development of the most dominant 2nd mode at position A)
shows an almost neutrally behavior on the cooling element, because the disturbance
is now nearly a 3-d first mode that is more amplified than a 2-d first mode, before it
increases in the region of the trailing edge. Farther downstream the recovery of the 3-d
second mode takes longer, visible by the still reduced growth. Apparently, the effect of
the thermal element is approximately limited to its streamwise extent and leads to a shift
of the N-factor development, here for the 2-d cooling element to ∆N = −0.56.
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FIGURE 18. N-factor curves of all investigated cases for the integrally most amplified frequency
(f = 87.7 kHz, solid curves represent 2-d modes, for the reference case it is a second mode).
The thick solid line marks the streamwise extent of the heating/cooling element.

4. Conclusions

At first, the development of the disturbances in a hypersonic boundary layer with a
two-dimensional local heating and cooling element at the wall was studied using DNS
and LST. It was shown that both approaches deliver similar results for the investigated
2-d disturbances. The results of the simulations show that the variation of the boundary-
layer thickness due to the local temperature variation has a significant effect on the
development of the second mode disturbances. At the same time the wall temperature
strongly affects the stability of the first mode which may dominate the transition in the
case of local wall heating. Based on the analysis of the numerical simulation, it can be
concluded that the local heating of the wall results in an increase of pulsations every-
where, except for the region of the heater. The cooler may be used for transition delay,
but it has to be done carefully in order to prevent a premature transition on it. The ef-
fect of the local amplification above the cooler is more pronounced if the boundary-layer
thickness is significant. Taking into account that the local amplification on the cooler is
much higher if it is placed far downstream, it has to be located close to the model leading
edge.

In addition, the influence of a three-dimensional heating/cooling element was inves-
tigated. The stability behavior of the flow regime was analyzed by means of the bi-
global linear stability theory at three different y-z cross-planes and compared with the
results of the corresponding two-dimensional cases. It was shown that despite the three-
dimensionality of the heating/cooling element 1st-mode disturbances play a minor role.
The 3-d effects are found to be rather weak and seem to be restricted to the region of
the element. As the unperturbed flat-plate behavior is likely to be restored in the wake
of the element (as the results found here so far suggest), the N-factor shift caused by
the element defines the promotion or delay of transition. Only a delay has been found
by local cooling despite the 2nd mode is primarily affected. While the tracking of rms-
amplitudes cannot clarify the role of the dominating frequencies, the N-factor curves
gained using distinct frequencies allow the scrutinization of the prevailing mechanisms.
Locally, a fixed-frequency mode is pushed from the 2nd-mode to the 1st-mode region due
to the decreased boundary-layer thickness. Thus, a drop-off in growth results, causing
a reduced integral amplification of second mode disturbances along the plate.
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